
Best Practices for Debugging
Connected Applications running Zephyr

Chris Coleman
Luka Mustafa

2

Speakers

• Co-Founder & CTO, Memfault
• Previously a Firmware Engineer @ Sun

Microsystems, Pebble, & Fitbit
• Zephyr TSC member

• Founder & CEO, IRNAS
• Multidisciplinary engineer with EE background
• Designing IoT solutions for industrial applications

Chris Coleman Luka Mustafa

3

Connected Applications

● 22 billion connected devices as of 2018,
50 billion projected by 2030!*

● Connectivity stacks are complex

● Many classes of issues
○ Faults / Hangs
○ Performance
○ Security
○ Connectivity interoperability

*Source: https://www.statista.com/statistics/802690/worldwide-connected-devices-by-access-technology/

https://www.statista.com/statistics/802690/worldwide-connected-devices-by-access-technology/

4

Example project at IRNAS to set the scene

Device lifecycle

6

Debug Setup

Monitor

Release

Alert

Debug

Analyze

Prototyping &
Development

7

Agenda

 1 Local Debug Setup

 2 Zephyr Debug (K)Config Tips

 3 Remote Monitoring Best Practices with Examples

Local Debug Setup

9

Local Debug Setup

1. Reliable JTAG setup

2. Ability to read/write memory

3. Ability to script common operations

● I use SEGGER J-Link + JLinkGDBServer + GDB

10

Starting GDB

$ west --verbose debug --runner jlink --gdb
arm-none-eabi-gdb-py

-- runners.jlink: J-Link GDB server running on port 2331
runners.jlink: JLinkGDBServer -select usb -port 2331 -if
swd -speed 4000 -device nRF9160_xxAA -silent -singlerun

(gdb)continue

11

Flashing Target

(gdb) mon reset
 Resetting target
(gdb) load
`build/zephyr/zephyr.elf' has changed; re-reading symbols.
Start address 0x00015df0, load size 130437
Transfer rate: 25475 KB/sec, 4207 bytes/write.
(gdb)

With west:

Directly via JLinkGDBServer / GDB!

$ west flash

12

Console / Logging

pyserial

$ pip install pyserial
$ pyserial-miniterm - 115200 --raw
--- Available ports:
--- 3: /dev/cu.usbmodem0009600050801 'J-Link - CDC DATA interface'
--- 4: /dev/cu.usbmodem0009600050803 'J-Link - CDC DATA interface'
--- 5: /dev/cu.usbmodem0009600050805 'J-Link - CDC DATA interface'

$ pyserial-miniterm /dev/cu.usbmodem0009600050801 115200 --raw
uart:~$ *** Booting Zephyr OS build v2.4.99-ncs1-3525-g4d068de3f50f ***

Zephyr Debug (K)Config Tips

14

Thread Awareness

● CONFIG_DEBUG_THREAD_INFO=y
○ (Originally CONFIG_OPENOCD_SUPPORT=y)

15

Debug printing with printk

CONFIG_PRINTK=y

● Bypasses logging subsystem by
default and prints directly to
console

● Useful for minimal overhead and
guaranteed printing

void main(void) {
 printk("System Started!\n");
 // ...
}

uart:~$ System Started!
// ...

16

Console Printing with Logging Subsystem

● CONFIG_LOG=y
● CONFIG_SHELL=y
● Deferred Mode (default)

○ logs are buffered and flushed process on low priority task
○ CONFIG_LOG_MODE_DEFERRED=y

● Immediate Mode (recommend for debug)
○ Logs are flushed from running task.
○ CONFIG_LOG_IMMEDIATE=y

● ⚠ Leaving logging impacts power consumption
○ Should be disabled for low power applications in production

17

Zephyr Logging Modules

Kconfig
module = MY_MODULE
module-str = My module
source "${ZEPHYR_BASE}/subsys/logging/Kconfig.template.log_config"

// my_module.c
LOG_MODULE_REGISTER(my_module, CONFIG_MY_MODULE_LOG_LEVEL);

prj.conf - Choose one of the following:
CONFIG_MY_MODULE_LOG_LEVEL_OFF=y # 0
CONFIG_MY_MODULE_LOG_LEVEL_ERR=y # 1
CONFIG_MY_MODULE_LOG_LEVEL_WRN=y # 2
CONFIG_MY_MODULE_LOG_LEVEL_INF=y # 3 (default)
CONFIG_MY_MODULE_LOG_LEVEL_DBG=y # 4

18

Zephyr Logging Level Options

1. Autogenerated “autoconf.h file contains all active settings:

○ See “build/zephyr/include/generated/autoconf.h”

2. Grep through file for LOG_LEVEL, i.e

 $ rg "LOG_LEVEL " build/zephyr/include/generated/autoconf.h

 60:#define CONFIG_MPSL_LOG_LEVEL 3
 68:#define CONFIG_MGMT_FMFU_LOG_LEVEL 3
 84:#define CONFIG_MEMFAULT_INTEGRATION_LOG_LEVEL 3
 86:#define CONFIG_AGPS_LOG_LEVEL 3
 97:#define CONFIG_NRF_MODEM_LIB_LOG_LEVEL 3
 // ...

Remote Monitoring Best Practices

20

Hands on example

Static sensor with long lifetime
• All faults must be handled to

conserve power
• Operation to be optimized based

on the use-case
• Validate upgrades in the field

GPS tracker on an animal
• Mobile connectivity issues to be

observed and resolved
• Hardware performance monitored
• Track and monitor all issues over

time

21

Remote Monitoring Zephyr with Memfault

● Works on any ARM-based MCU with Zephyr OS
● C-SDK with connectivity agnostic data transport
● Cloud based issue analysis, alerting and deduplication on both

device level and fleetwide trends

Continuously monitor devices
with Metrics

Remotely debug issues with
coredumps, events and logs

Deploy OTA updates safely with
staged rollouts and targeted

device groups

22

Memfault Zephyr Integration

west.yml
[...]

- name: memfault-firmware-sdk
 url: https://github.com/memfault/memfault-firmware-sdk
 path: modules/memfault-firmware-sdk
 revision: master

prj.conf
CONFIG_MEMFAULT=y
CONFIG_MEMFAULT_HTTP_ENABLE=y

Core Properties To Track

24

Agenda

 3 Faults & Asserts

 4 Connectivity Metrics

 1 Reboot Reasons

 2 Watchdogs

Reboot Reasons

26

Tracking Device Resets

Leading indicator of fleet health

27

Tracking Device Resets

Hardware Resets
● Examples

○ PLL & Clock Failures
○ Brown Out
○ Hardware Watchdogs

● Can identify hardware defects

Software Resets
● Examples

○ Firmware Update / OTA
○ Assert
○ User initiated

28

Tracking Software Resets

1. Create “noinit” RAM region /* memfault-no-init.ld */
KEEP(*(*.mflt_reboot_info));

CMakeLists.txt
zephyr_linker_sources(NOINIT memfault-no-init.ld)

2. Place C variable in region __attribute__((section(".noinit.mflt_reboot_info")))
static uint8_t

s_reboot_tracking[MEMFAULT_REBOOT_TRACKING_REGION_SIZE];

3. Record reason for reboot void fw_update_finish(void) {
 // ...

memfault_reboot_tracking_mark_reset_imminent(kMfltRebootReason_F
irmwareUpdate, ...);
 sys_reboot(0);
}

29

Capturing Device Resets on Zephyr

static int record_reboot_reason() {
 // 1. Read hardware reset reason register. (Check MCU data sheet for register name)
 // 2. Capture software reset reason from noinit RAM
 // 3. Send data to server for aggregation
}

SYS_INIT(record_reboot_reason, APPLICATION, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);

Register init handler that to read bootup information:

30

Capturing Device Resets on Zephyr

static int record_reboot_reason() {
 // 1. Read hardware reset reason register.
(Check MCU data sheet for register name)
 // 2. Capture software reset reason from noinit RAM
 // 3. Send data to server for aggregation
}

SYS_INIT(record_reboot_reason, APPLICATION,

CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);

Register init handler that to read bootup information:

31

Example: Power supply issue

● 12K device reboots a day - way too much
● 99% of reboots contributed by 10 devices
● Bad mechanical part contributing to device

constant reboots

Watchdogs

33

Defending against Hangs

● Last line of defense against a hung system!
● Can happen for many reasons:

○ Connectivity Stack Blocks on send()
○ Infinite Retry Loop talking to system
○ Deadlock between tasks
○ Corruption

● Two pieces:
○ Hardware Watchdog

■ Built in and/or external peripheral to reset device
○ Software Watchdog

■ Interrupt that fires ahead of hard reset so watchdog can be root caused

34

Zephyr - Hardware Watchdog API

// ...
void start_watchdog(void) {
 // consult device tree for available hardware watchdog
 s_wdt = device_get_binding(DT_LABEL(DT_INST(0, nordic_nrf_watchdog)));

 struct wdt_timeout_cfg wdt_config = {
 /* Reset SoC when watchdog timer expires. */
 .flags = WDT_FLAG_RESET_SOC,

 /* Expire watchdog after max window */
 .window.min = 0U,
 .window.max = WDT_MAX_WINDOW,
 };

 s_wdt_channel_id = wdt_install_timeout(s_wdt, &wdt_config);

 const uint8_t options = WDT_OPT_PAUSE_HALTED_BY_DBG;
 wdt_setup(s_wdt, options);
 // TODO: Start a software watchdog
}

void feed_watchdog(void) {
 wdt_feed(s_wdt, s_wdt_channel_id);
 // TODO: Feed software watchdog
}

See Zephyr API for more details:
zephyr/include/drivers/watchdog.h

https://github.com/zephyrproject-rtos/zephyr/blob/e18fcbb/include/drivers/watchdog.h

35

Zephyr Software Watchdog

New built in “Task Watchdog”
API in 2.6 Release.

static void prv_software_watchdog_timeout(struct k_timer *dummy) {
 MEMFAULT_ASSERT(0);
}

K_TIMER_DEFINE(s_watchdog_timer, prv_software_watchdog_timeout, NULL);
static uint32_t s_software_watchog_timeout_ms = MEMFAULT_WATCHDOG_SW_TIMEOUT_SECS * 1000;

static void prv_start_or_reset(uint32_t timeout_ms) {
 k_timer_start(&s_watchdog_timer, K_MSEC(timeout_ms), K_MSEC(timeout_ms));
}

int memfault_software_watchdog_enable(void) {
 prv_start_or_reset(s_software_watchog_timeout_ms);
 return 0;
}

int memfault_software_watchdog_feed(void) {
 prv_start_or_reset(s_software_watchog_timeout_ms);
 return 0;
}

https://docs.zephyrproject.org/latest/reference/task_wdt/index.html

36

Example: SPI driver stuck

● SPI flash degrading over time, incorrect timing of communication
● Traced this on 1% of devices after 16 months of field deployment
● Driver fix and roll-out with next release

Faults & Asserts

38

Fault Handler - Register Dump

39

Zephyr Fault Handler - Cortex M

void network_send(void) {

 const size_t packet_size = 1500;

 void *buffer = z_malloc(packet_size);

 // missing NULL check!

 memcpy(buffer, 0x0, packet_size);

 // ...

}

// zephyr/arch/arm/core/aarch32/cortex_m/fault.c

void z_arm_fault(uint32_t msp, uint32_t psp,

uint32_t exc_return,

 _callee_saved_t *callee_regs)

{

 // ...

}

bool memfault_coredump_save(const

 sMemfaultCoredumpSaveInfo

*save_info) {

 // Save register state

 // Save _kernel and task contexts

 // Save selected .bss & .data regions

}

void sys_arch_reboot(int type) {

 // ...

}

40

Zephyr Fault Handler - Memfault Analysis

Configurable Fault Status Register (CFSR)

 Analysis
Configurable Fault (i.e UsageFault, BusFault,
MemManage) escalated to HardFault

BusFault detected at 0x50008158

Precise BusFault detected! Triggered by
Instruction: ‘Idr r1, [r3, #0]’ pc=0x00026fb8

Fault Register Value Hex Value

CFSR 33280 0x00008200

HFSR 1073741824 0x40000000

SHCSR 458884 0x00070084

41

Zephyr Fault Handler - Stacks

42

Zephyr Fault Handler - Globals & Statics

43

Example: Accelerometer fault

● Non-critical fault - asserting trace to see
● Traced this on 3% of devices - non-critical but good to fix
● Either HW related or race-condition related

44

Example: SIM card fault

● Failing to read SIM card upon boot
● Traced this on <0.1% of devices -

non-critical as devices retry successfully
● HW related

45

Example: GPS fix failed

● Device GPS fix failing in certain cases
● Understand state of device when that happens
● Have option to log values, for example which satellites

have been seen at what signal level

46

Example: NB-IoT modem GPS wait

● nRF9160 modem and GPS can not be used at the same time
● Mechanism implemented to prevent this, asserting issue to

track how often these events happen
● FW related

47

Example: Prioritizing Fixes

Connectivity Metrics

49

Using Metrics to Monitor Performance

● Not all issues result in resets!

● Many factors can impact connectivity
○ location / RF environment
○ antenna efficiency
○ data being transferred
○ CPU & task utilization, time sleeping

● Enables health comparisons across all devices and between
firmware releases

50

Adding Metrics to Zephyr with Memfault

void lte_disconnect(void) {
 memfault_metrics_heartbeat_add(
 MEMFAULT_METRICS_KEY(LteDisconnect), 1);
 //...
}

1. Define metric

2. Update metric in code

MEMFAULT_METRICS_KEY_DEFINE(

 LteDisconnect,

kMemfaultMetricType_Unsigned)

Memfault SDK + Cloud
● Serializes and compresses metrics

for transport
● Indexes Metrics by device and

firmware version
● Exposes web interface for

browsing metrics by device and
across Fleet

51

Example: NB-IoT/LTE-M basic connectivity

● Connected: Time modem is actively communicating with mobile network
● Connecting: Time modem requires to connect to mobile network
● Track activity and power consumption

52

Example: base stations and PSM in
NB-IoT/LTE-M

● Tracking base-station response upon connect
○ Check timer responses for PSM/eDRX
○ Check IDs and rough locations

● Correlate issues with particular base-stations or networks

53

Example: Mobile network signal quality

● Signal level: Monitoring quality of coverage for moving device
● SNR: Link quality
● Track what is the average value across fleet

54

Example: NB-IoT/LTE-M bad coverage

● Connected: Time spend sending data, SNR: Link quality
● Most of the time connected time is low, on bad SNR it significantly

increases. 15s ---> 250s, same amount of data to send.
● Introduced a timeout based on SNR, better to skip sending

55

Example: NB-IoT/LTE-M data size

● UDP data size: Track bytes per send interval
● Post-reboot more data is sent
● Some packets are bigger due to more info or traces
● Track issue of data consumption

Automated testing

57

Example: Device cyclic testing

● Track automated tests progress
● On-device metrics: battery, runtime, number of inputs/output...
● Test-jig metrics: test pass/fail count, number of requested inputs...

○ via REST API from jig
● Compare on-device and test system results to track issues

58

About IRNAS

At Institute IRNAS, we strive to apply the vast scientific
knowledge to everyday reality, by creating hardware
products and IoT systems that are:

• effective,
• affordable,
• well-tailored,
• future-proof.

We believe in an open-source world and sharing.

We aim to empower the world with technologies that
improve lives, let that be an advanced communication
system, an open, affordable medical device, 3D
bioprinting or a simple everyday utensil.

6-in-One Complete Service

• Electronics Engineering

• Software Engineering

• Mechanical Engineering

• Rapid Prototyping

• Small to medium-size series manufacturing

• Experimental testing for scientific applications

59

Why IRNAS for Zephyr Devices

• Product Development - Offer a complete development
service, taking your project from the idea to the finished
product. Focusing on industrial IoT applications primarily on
BLE, NB-IoT/LTE-M, LoRaWAN based on Nordic
Semiconductor solution and running Zephyr.

• In-house Manufacturing - In-house fabrication lab is fully
equipped for prototyping & manufacturing, and it includes an
electronics PnP line, 3D printers, a laser cutter, a CNC
workstation, a CNC mill, and more.

• Cross-Disciplinary Team - Highly-skilled team of scientists
and engineers with expertise in mechanical, electronic and
software engineering, data analysis and numerical control,
acoustical, medical and bio-engineering.

IRNAS technology map 2021

60

Why Memfault for Zephyr Devices

Fault Debugging
• Zephyr integrations for 1.14 LTS - 2.6
• Automatic Issue Deduplication
• Zephyr RTOS Task Awareness
• Fault handler provided as part of C-SDK
• Full stacktrace and variable recovery

Device Monitoring
• Easily scale up or down
• Add custom metrics with 2 lines of code (battery level,

connectivity stats, RTOS Statistics, etc)
• Device and fleet-level metrics in one dashboard

OTA Firmware Updates
• Send bug fixes from the same platform
• Deploy and schedule cohort-based and staged rollouts
• Stop faulty updates with one click

61

Extra Reading & Resources

IRNAS
• IRNAS Website

• IRNAS Blog: ElephantEdge tracker: Designing the firmware and first prototype solution

• IRNAS Blog: RAM-1: Remote monitoring of smart power grids with cellular IoT- and Bluetooth LE-powered device

Memfault

• Memfault Free Trial

• Interrupt Blog: How to debug a HardFault on an ARM Cortex-M MCU

• Interrupt Blog: Fix Bugs and Secure Firmware with the MPU

• Interrupt Blog: A Practical guide to ARM Cortex-M Exception Handling

• Interrupt Blog: A Guide to Watchdog Timers for Embedded Systems

https://www.irnas.eu/
https://www.irnas.eu/elephantedge-tracker-designing-the-firmware-and-first-prototype-solution/
https://www.irnas.eu/ram-1-remote-monitoring-of-smart-power-grids-with-cellular-iot-and-bluetooth-le-powered-device/
https://hubs.la/H0PVjWy0
https://hubs.la/H0PVjYG0
https://hubs.la/H0PVjX_0
https://hubs.la/H0PVjYX0
https://hubs.la/H0PVjY80

Questions?

