Proactive Debugging with

s Memfault Offensive Programming

Tyler Hoffman, Co-Founder, Memfault

Does this look

void process_something(sData *data) {
ultnt8_t *buf = malloc();
if (buf oAl
LOG("Malloc fatiled");

return;

It’s defensive,

void process_something(sData *dzia) { « Pretends like it’s recoverable
uint8 5 *buf = malloc();

if (buf == Il
LOG("Mallo tailed"); « Often leads to silent failures and

« Requires implementation knowledge

returps confusion

« Someone has to eventually deal with

the error. Maybe your future self.

I It can be appropriate at times

<> <—>» Hardware

ks
< 3rd Party
0 l¢«—>
<> o Libraries
£
S 3rd Party
Internal Software <> S <> Applications
o
g
<—>» 2 <«—>» UserInputs
(O]
©
&)
Comms
<> > Stacks

Not externally
triggered, don’t
explicitly handle it!

Could be adversarial,
handle it gracefully

#1 takeaway
from this talk

int do_something(void) {
uint8_t *buf = malloc(
1f (buf ==) {
return -1;

void do_something(void) {
uint8 t *buf = malloc(
ASSERT(buf != NULL);

I Agenda

1. What is Offensive Programming

2. Production Usage
3. Examples

4. Best Practices

Tyler Hoffman

| love developer tools, primarily for embedded
engineers

Previously: Firmware Engineer @ Pebble,
Fitbit

| write on Memfault’s Interrupt blog and give
talks.

https:/interrupt.memfault.com

i fitbit pebble. €@ Memfault

https://interrupt.memfault.com/

Offensive

void do_something(void) {
utnt8_t *buf = malloc();

ASSERT(buf != NULL);

Raise errors immediately — and loudly

https://interrupt.memfault.com/blog/asserts-in-embedded-systems

https://interrupt.memfault.com/blog/asserts-in-embedded-systems

I Internal Software Modules

<> <—>» Hardware

3rd Party
Libraries

Assert in here — <l

3rd Party

Internal Software <> Applications

<—>» User Inputs

Defensive Programming Barrier

Comms
Stacks

Internal Software Modules

Drivers RTOS Algorithms
B.LE . GUI Protocols
Application
Services Resource State
Management Machines

Majority of the software stack is in our control

Reasons to use Assert

Infinitely better than documentation

Asserts provide breadcrumbs (file & line number)

Raise alarms close to the root issue void do_something(void) {
uint8_t *buf = malloc();

Safest thing to do in undefined state is to reset , fooEnbur s L

You control the assert handler

Capture extra data, logs, a coredump. Anything!

I What you should assert on

Programmer Error Undefined Behavior Resource Exhaustion Performance
Invalid arguments * Memory corruption * Malloc failures * Queues full
Out-of-order API calls * Security issues + Stack overflow * Watchdog timers

Many of these are very difficult to reproduce

Yes. Even in production

o most of the time
Wait a < >
minute... The problem is that our
ASSERTQ devices are now resetting
. with no debugger attached.

Liberally!?

I Production environments

Every bug will surface in production

Assert
¢ 1in 10,000 bugs are real
© Production has the greatest matrix of

test cases

o Log if assertions aren’t possible in Coredump

some cases

Diagnostics need to be collected Analyze

I Prerequisites for Production

Diagnostics & monitoring is a requirement 9 M emfa U It

¥ Basic telemetry & logging

¥ Proper fault handling

Logs, Metrics,

V' Assert implementation Crashes

¥ Some path to receive error data

¥ Devices can firmware update

Memfault SDK

I What to capture on an assert

o File and line number of the assert

Expression value (if configured to do so)

/ o Backtrace of the asserted task Debugger attached
o Arguments and variables within the call stack or

o Global and static variable values

o State of all data structures (heap, queues, etc.)

Threads

v accel-workq (2)

STACK OVERFLOW m

» 0 compute_fftin .../src/fft.c at line 10

v

1 sleep_algo_compute_sleep_time in .../src/sleep_algo.«
» 2 process_accel_data_worker_task in .../src/accel_data

v

3 Z_work_q_main in .../zephyr/lib/os/work_g.c at line 32

v

4 z_thread_entry in .../lib/os/thread_entry.c at line 29
» 5 Oxaaaaaaaa
v Thread 3
» 0 z_arch_irq_unlock in .../arm/asm_inline_gcc.h at line 137
» 1 _swap in../arch/arm/core/swap.c at line 63
» 2 z_swap_irglock in .../kernel/include/kswap.h at line 145
» 3 z_swap in../kernel/include/kswap.h at line 145
» 4 z_tick_sleep in .../zephyr/kernel/sched.c at line 965
» 5 z_impl_k_sleep in .../zephyr/kernel/sched.c at line 983
» 6 k_sleep in.../syscalls/kernel.h at line 21
» 7 eswifi_spi_poll_thread in .../eswifi/eswifi_bus_spi.c at lii
» 8 z_thread_entry in .../lib/os/thread_entry.c at line 29
» 9 Oxaaaaaaaa

> idle (4)
» logging (5)
» net_mgmt (6)

Exceptions Registers & Locals Globe

Analysis

Memory management fault detected at
0x2000a3c0

Memory management fault on a data access

Fault Register Value Hex Value

CFSR 130 0x00000082
HFSR 0 0x00000000
SHCSR 458753 0x00070001

Memory Viewer

Q

Ivl

Regions VvV

00e10020 ...

959e 0008
259e 0008
819d 00 08

819d0008

819d 0008

819d0008

819d 00 08

819d0008

819d 00 08

819d0008
9d9%b 0008
819d0008

819d 0008
419b 0008

ed950008

6d 9e 00 08
6d 9e 00 08
6d 9e 00 08
6d 9e 00 08
6d 9e 00 08
6d 9e 00 08
6d 9e 00 08

mlll

mlll

mlll

mlll

Exceptions Registers & Locals Globals & Statics

() dft_out = 0x20002900 <my_stack_area+1344>
Mi =400

() num_samples = 536912536

(Jraw_samples = 0x3128115f

Mtmp ={1, 222, 7, 84}

[sro = 536912536 (0x2000a298)
REINIE 1372324912 (0x51¢cc0430)
Qsr2 - 1372324919 (0x51¢cc0437)
sr3 = 536912832 (0x2000a3c0)
()%ra = 536912508 (0x2000a27c)
o5 = 536914136 (0x2000a8d8)
[$r6 = 1010 0 (0x00000000)
7 = 536912488 (0x2000a268)
) $r8 = 1ono 0 (0x00000000)
3 $r9 = 1010 0 (0x00000000)
[3$r10 = 1ong 0 (0x00000000)
£)$r11 = long 0 (0x00000000)
) $r12 = long 0 (0x00000000)
[)%sp = 0x2000a268 <my_stack_area2+104> (0x2000a2...
Qsir= 134353149 (0x080210fd)

1 2 >

Q. Order by

» lock = {..}
overflow_cyc = 0o
heap_sz = 0o
» s_mflt_packetizer_state = {..}
» s_active_data_source =
> s_ds_rle_state = s}
» s_event_storage = {..}
» s_event_storage_read_state =
» s_event_storage_write_state =
» s_memfault_ram_logger = {.}
v s_mfit_reboot_info = {..}
. gl {ae}
magic = 559170130
version = 2
crash_count = 1
» rsvd1 = Rk
coredump_saved = 1
last_reboot_reason = 0
pc = 0
Ir = 0
reset_reason_reg0 = 0
» rsvd2 = {isid

Memory Locati

{.}

I Offensive Programming Examples
With Memfault as your “debugger”

Argument Validation

vold device_set_name(char *name,
size_t name_len) {
ASSERT(name && name_len <=);

} e

bool device_get_name(char **puf,
size_t buf len) {
ASSERT(buf && buf len >=)3

Developer errors — Raise the alarm immediately

I Argument Validation

State

Logs

Threads

v Thread 1

4

4

4

0 memfault_reboot_tracking_assert_handler in ../memfault_fault_handling.c at line 171
1 cli_execute in .../libraries/cli/nrf_cli.c at line 2554

2 cli_state_collect in .../libraries/cli/nrf_cli.c at line 1952

3 nrf_cli_process in .../libraries/cli/nrf_cli.c at line 2852

4 mflt_cli_try_process in src/cli.c at line 37

5 idle_state_handle in src/main.c at line 1030

6 main in src/main.c at line 1030

Exceptions Registers & Locals Globals & Statics

() extra = <optimized out>

M info = { reason = kMfltRebootReason_Assert, pc = 159296, Ir = 168611 }
(JIr = <optimized out>

Y pc = <optimized out>

[3$ro = 537122316 (0x2003d60c)
Ds%r1 = 559170130 (0x21544252)
Dsr2 - -536810236 (0xe000ed04)
Q3= -2147483648 (0x80000000)
(REICE 1 (0x00000001)

Q%5 = 537122512 (0x2003d6d0)
RECE 1 (0x00000001)

D $r7 = 240896 (0x0003ad00)
Qsrs = 537122448 (0x2003d690)
[$ro = 240896 (0x0003ad00)
[D$r10= 241888 (0x0003b0e0)
Ds$r11= 0 (0x00000000)

Ds$r12= 1 (0x00000001)

D $sp = 0x2003d608 (0x2003d608)
D sIr= 226689 (0x00037581)

[$pc = 0x3750e <memfault_reboot_tracking_assert_handler+42> ((

1 2 >

State machine transition errors

void on_commit(eState prev_state) {
ASSERT(prev_state == kState_Flushing

|| prev_state == kState_Idle);

Ensure that states happen in order and as expected

Malloc returns NULL

void *malloc_assert(size t n) {
void *p = malloc(n)
ASSERT(p);

return p;

For allocations that should never fail

Likely means a memory leak

I Memfault Memory View

Exceptions Registers & Locals Globals & Statics Heap

0 30 60

Mode FAReIIe G Sum by block size Sum by allocation site

Filter BAg'A Used Free

Used @ - Address Size Allocation site

v @ 0x2001fc48 1024 memfault_demo_cli_malloc in ..
@ 0x2001fc48 1024 memfault_demo_cli_malloc in ..

v @ 0x2001f840 1024 memfault_demo_cli_malloc in ..
@ 0x2001f840 1024 memfault_demo_cli_malloc in ..

v @ 0x2001f438 1024 memfault_demo_cli_malloc in ..
@ 0x2001f438 1024 memfault_demo_cli_malloc in ..

v @ 0x2001f030 1024 memfault_demo_cli_malloc in
@ 0x2001fe30 1024 memfault_demo_cli_malloc in ..

v @ 0x2001ec28 1024 memfault_demo_cli_malloc in ..
@ 0x2001ec28 1024 memfault_demo_cli_malloc in ..

ISR Analysis

90

./memfault_demo_shell_commands.c at line 48

./memfault_demo_shell_commands.c at line 48

./memfault_demo_shell_commands.c at line 48

./memfault_demo_shell_commands.c at line 48

./memfault_demo_shell_commands.c at line 48

./memfault_demo_shell_commands.c at line 48

.../memfault_demo_shell_commands.c at line 48

./memfault_demo_shell_commands.c at line 48

./memfault_demo_shell_commands.c at line 48

./memfault_demo_shell_commands.c at line 48

1 2 3 4 > 10 / page

Full Queue

void critical _event(void) {

const bool success =

xQueueSend(qg, &item,
ASSERT(success);

Track down performance issues using a timeout

Resource Depletion - full queue

(gdb) queue_print s_event_qgueue

Queue Status: / events in queue (FULL!)
: Addr: event: BLE_PACKET
: Addr: event: TICK_EVENT
: Addr: event: BLE PACKET
: Addr: event: BLE_PACKET
: Addr: event: BLE_PACKET
: Addr: event: BLE PACKET
: Addr: event: BLE_PACKET
: Addr: event: BLE_PACKET
Yo [o I g event: BLE_PACKET
: Addr: event: BLE_PACKET

Weren’t processing BLE packets fast enough

Detecting software stalls

void timing_sensitive_task(void) {
const bool success =
mutex_lock(&s_mutex,
ASSERT(success);

Fail if mutex not grabbed in reasonable time

Detecting software stalls

void timing_sensitive_task(void) {

mutex_lock(&s_mutex, INFINITY);

Let the software watchdog detect the stall

I Detecting software stalls

State Logs
Threads
v External Interrupt 8 - Exception Number 24 (2)

» 0 MemfaultWatchdog_Handler in ./software_watchdog.c at line 84
» 1 <signal handler called>

» 2 prvPortStartFirstTask in .../GCC/ARM_CM4F/port.c at line 270

» 3 xPortStartScheduler in .../.GCC/ARM_CMA4F/port.c at line 384

» 47?77

v Temp (3)

» 0 spi_flash_erase_complete in ./spi.c at line 4
» 1 erase_flash_storage in ./flash.c at line 31

» 2 record_temperature in ./temp.c at line 18

» 3 prvTemperatureTask in ./main.c at line 112

» 472
» Accel (4)
» Background (5)

» IDLE (6)
» Tmr Svc (7)

I Stack Overflow Detection

Many RTOS’s have this built in now. Double check yours!

State Logs
Threads
~ accel-workg (2) [sTacK overrLow JRUNNING

» N ~rmniita fft in __lerelfft e at line 10

Stack Details time in .../src/sleep_algo.c at line 12

_task in .../src/accel_data.c at line 106
Start: @ 0x2000a3e0

ifos/work_g.c at line 32
High Water Mark: 0O bytes free

rad_entry.c at line 29

V2 v VAdaaaaaaa

» Thread 3 SUSPENDED

https://embeddedartistry.com/blog/2020/05/18/implementing-stack-smashing-protection-for-microcontrollers-and-embedded-artistrys-libc/

https://www.freertos.org/Stacks-and-stack-overflow-checking.html

https://docs.zephyrproject.org/latest/reference/usermode/memory_domain.html#hardware-stack-overflow

https://embeddedartistry.com/blog/2020/05/18/implementing-stack-smashing-protection-for-microcontrollers-and-embedded-artistrys-libc/
https://www.freertos.org/Stacks-and-stack-overflow-checking.html
https://docs.zephyrproject.org/latest/reference/usermode/memory_domain.html

Failing even faster: Compile-time errors

typedef struct PACKED {
uint32_t count;
uint8_t buf[12];
uint8_t new_value;

} MyStruct;

_Static_assert(sizeof(MyStruct) <= , "Oops, too large!");

$ gcc test.c
test.c:14:1: error: static_assert failed due to requirement
'sizeof(MyStruct) <= 16' "Oops, too large!"

_Static_assert(sizeof(MyStruct) <= 16, "Oops, too large!");

N

error generated.

I Best Practices

Watch out for boot loops

Boot loop detection is a must.

© You control the assert handler

o Capture extra data, logs, a coredump. Anything!
o Don’t assert on boot

o Count # reboots within time interval

o Boot into safe mode

o Only FWUP, diagnostics pull, and factory reset

https://interrupt.memfault.com/blog/device-firmware-update-cookbook

pebble.com/sos

https://interrupt.memfault.com/blog/device-firmware-update-cookbook

Build asserts into wrappers

void *malloc assert(size t size) {
uitnt8 t *buf = malloc() ;
ASSERT(buf != K

return buf;

Clean and simple

I Debug builds are your friend

Internal testing is the best kind of testing -

On internal builds: ”Your Pebble

. . just reset.
¢ Enable more aggressive asserting I

Please file a
bug.”

o Tighten timeout durations

¢ Send builds to small groups externally

o Test. Experiment. Try things. Be creative. -

- Every Pebble internal firmware build

I LE:LCEVVENE

¢ Don’t play defense against bugs

¢ Fall fast and capture data

¢ Test internally as much as possible
o Keep asserts in production

o We at Memfault would love to help

Thank You!

memfault.com

twitter.com/memfault

linkedin.com/company/Memfault

interrupt.memfault.com

Co-founder, Memfault

g Memfault

http://memfault.com/Android
http://twitter.com/memfault
http://linkedin.com/company/memfault
https://interrupt.memfault.com/
https://mflt.io/careers
https://memfault.com

€ Memfault

