
Proactive Debugging with

Offensive Programming
Tyler Hoffman, Co-Founder, Memfault

Does this look Familiar?

It’s defensive, but poorly done

• Pretends like it’s recoverable

• Requires implementation knowledge

• Often leads to silent failures and

confusion

• Someone has to eventually deal with

the error. Maybe your future self.

It can be appropriate at times

Not externally

triggered, don’t

explicitly handle it!

Could be adversarial,

handle it gracefully

#1 takeaway

from this talk

Agenda

1. What is Offensive Programming

2. Production Usage

3. Examples

4. Best Practices

Tyler Hoffman

Co-Founder & Lead Engineer, Memfault

I love developer tools, primarily for embedded

engineers

Previously: Firmware Engineer @ Pebble,

Fitbit

I write on Memfault’s Interrupt blog and give

talks.

https://interrupt.memfault.com

https://interrupt.memfault.com/

Offensive Programming

Raise errors immediately – and loudly

https://interrupt.memfault.com/blog/asserts-in-embedded-systems

https://interrupt.memfault.com/blog/asserts-in-embedded-systems

Internal Software Modules

Assert in here

Internal Software Modules

Majority of the software stack is in our control

Reasons to use Assert

Infinitely better than documentation

Asserts provide breadcrumbs (file & line number)

Raise alarms close to the root issue

Safest thing to do in undefined state is to reset

You control the assert handler

Capture extra data, logs, a coredump. Anything!

Fail fast! – especially during development and testing

What you should assert on

Programmer Error

• Invalid arguments

• Out-of-order API calls

Undefined Behavior

• Memory corruption

• Security issues

Many of these are very difficult to reproduce

Resource Exhaustion

• Malloc failures

• Stack overflow

Performance

• Queues full

• Watchdog timers

Wait a

minute…

ASSERT?

Liberally!?

Yes. Even in production

(most of the time)

The problem is that our

devices are now resetting

with no debugger attached.

That’s where Memfault

comes in…

Production environments

Every bug will surface in production

Assert

Coredump

Analyze

Fix

Deploy

Update

1 in 10,000 bugs are real

Production has the greatest matrix of

test cases

Log if assertions aren’t possible in

some cases

Diagnostics need to be collected

Offensive Programming + Diagnostics = Quicker fixes

Prerequisites for Production

Diagnostics & monitoring is a requirement

Logs, Metrics,

Crashes

✅ Basic telemetry & logging

✅ Proper fault handling

✅ Assert implementation

✅ Some path to receive error data

✅ Devices can firmware update

Memfault SDK

What to capture on an assert

File and line number of the assert

Expression value (if configured to do so)

Backtrace of the asserted task

Arguments and variables within the call stack

Global and static variable values

State of all data structures (heap, queues, etc.)

Debugger attached

or

Offensive Programming Examples

With Memfault as your “debugger”

Argument Validation

Developer errors → Raise the alarm immediately

Argument Validation

State machine transition errors

Ensure that states happen in order and as expected

Malloc returns NULL

For allocations that should never fail

Likely means a memory leak

Memfault Memory View

Full Queue

Track down performance issues using a timeout

Resource Depletion – full queue

Weren’t processing BLE packets fast enough

Detecting software stalls

Fail if mutex not grabbed in reasonable time

Detecting software stalls

Let the software watchdog detect the stall

Detecting software stalls

Stack Overflow Detection

Many RTOS’s have this built in now. Double check yours!

https://embeddedartistry.com/blog/2020/05/18/implementing-stack-smashing-protection-for-microcontrollers-and-embedded-artistrys-libc/

https://www.freertos.org/Stacks-and-stack-overflow-checking.html

https://docs.zephyrproject.org/latest/reference/usermode/memory_domain.html#hardware-stack-overflow

https://embeddedartistry.com/blog/2020/05/18/implementing-stack-smashing-protection-for-microcontrollers-and-embedded-artistrys-libc/
https://www.freertos.org/Stacks-and-stack-overflow-checking.html
https://docs.zephyrproject.org/latest/reference/usermode/memory_domain.html

Failing even faster: Compile-time errors ⚡⚡

Best Practices

Watch out for boot loops

Boot loop detection is a must.

You control the assert handler

Capture extra data, logs, a coredump. Anything!

Don’t assert on boot

Count # reboots within time interval

Boot into safe mode

Only FWUP, diagnostics pull, and factory reset

https://interrupt.memfault.com/blog/device-firmware-update-cookbook

https://interrupt.memfault.com/blog/device-firmware-update-cookbook

Build asserts into wrappers

Clean and simple

Debug builds are your friend

Internal testing is the best kind of testing

On internal builds:

Enable more aggressive asserting

Tighten timeout durations

Send builds to small groups externally

Test. Experiment. Try things. Be creative.

- Every Pebble internal firmware build

”Your Pebble

just reset.

Please file a

bug.”

Takeaways

Don’t play defense against bugs

Fail fast and capture data

Test internally as much as possible

Keep asserts in production

We at Memfault would love to help

Thank You!

memfault.com

twitter.com/memfault

linkedin.com/company/Memfault

interrupt.memfault.com

We’re hiring!
Tyler Hoffman

Co-founder, Memfault

http://memfault.com/Android
http://twitter.com/memfault
http://linkedin.com/company/memfault
https://interrupt.memfault.com/
https://mflt.io/careers
https://memfault.com

