
Over-the-Air Updates
for Embedded Linux

Devices
Thomas Sarlandie

• Passion: building at the intersection of
software and hardware

• Previously led software teams at Pebble
and Fitbit

• 🦀 🦀 🦀 Rust-aficionado

Thomas Sarlandie
Linux Tech Lead, Memfault

High-level Overview of the OTA Process

Agenda

Implementation with SWUpdate & U-Boot

Q & A

Requirements for a Robust Over-the-Air update system

High-level Overview of the OTA Process

Agenda

Implementation with SWUpdate & U-Boot

Q & A

Requirements for a Robust Over-the-Air update system

5

Over-the-Air updates

Operate,
Observe

Analyze,
Debug

OTA
Management

Test

Code

Design

Contin
uous R

ele
as

e

Feedback Loop

🧑💻

Requirements of your over-
the-air update system

Predictable

Through new installs or
multiple updates, devices
always end-up in the exact
same configuration.

Reliable

Will not leave the device in an
“intermediate” state.

Will work even when other
components are not working.

Secure

Will verify the origin of the
update and maintain a
secure-boot chain.

7

The case against package managers

Embedded Linux Desktop Linux

Kernel

/etc
/usr
/bin

Kernel

Python

BrowserFull system updates Package by package

Reproducibility
Reliability Flexibility

High-level Overview of the OTA Process

Agenda

Implementation with SWUpdate & U-Boot

Q & A

Requirements for a Robust Over-the-Air update system

9

A/B Partition Scheme

Partition A

Kernel, apps,
configuration

Partition B

Embedded Linux Device

Data

10

Preparing an update

OTA Backend
GIT

Continuous
Integration

Update

11

Distributing updates

Partition A

Partition B

Embedded Linux Device

Updater

OTA Backend
Update
available?

12

Installing updates

Partition A

Partition B

Embedded Linux Device

Updater

OTA Backend
Update
available?

Write the disk

Download

13

Rebooting into an update

Partition A Partition B

Bootloader

Embedded Linux Device

Updater Set new
active

partition

14

Completing the update

Partition A Partition B

Bootloader

Embedded Linux Device

OTA Backend

Update Complete

Boot into B

High-level Overview of the OTA Process

Agenda

Implementation with SWUpdate & U-Boot

Q & A

Requirements for a Robust Over-the-Air update system

Our configuration today

Yocto

Linux distribution

Prepares the
filesystem image

that will be
distributed in the

update.

SWUpdate

Updater

Packages the
update, downloads

and installs it.

Memfault

OTA Backend

Distributes the
update to eligible

devices.

U-Boot

Bootloader

One of the most
common bootloader

today in the Linux
embedded world.

Implementing A/B partitions with Yocto

18

Partitioning scheme

Use Open-Embedded Image Creator (wic)
and a kickstart file (.wks) to create a partitioned image.

Only one of the two system partition is mounted.

Preparing the update package

Should be part of your CI

meta-swupdate includes a swupdate-image class

The update package contains a descriptor and a
complete image of the system partition.

Distributing updates

Fetching updates

27

Running swupdate

Start SWUpdate Suricatta daemon.

28

Configuring SWUpdate-Suricatta

Generated configuration file contains details of the device.

29

Running swupdate

Run in mode “copy2”

30

Configure update mode

31

Running swupdate

Regularly poll server

Installing the update

SWUpdate starts by downloading the descriptor

For each update mode, we specify how to write the
update package

The image is written directly to disk

Rebooting into the update

37

Rebooting into the update

SWUpdate will also write a U-Boot environment variable.

38

Bootloader environment variables

Configured at compile time.
Available in the bootloader and at runtime.

Bootloader

40

Bootloader script

The bootloader script defines the default boot partition,
and implements the A/B switch.

41

Bootloader script

Kernel, Device-Tree and System partition are all loaded from the A/B
partition. This enables us to update all of them with one package.

Notifying OTA Backend

44

Conclusion

Metrics

Memfault for Linux

OTA Backend Coredumps

Compatible with
SWUpdate, Mender
and more.

Cohorts management
Progressive roll-out

Collect and aggregate
metrics from large fleet
of devices

Correlate metrics to
firmware version

Capture coredumps
from crashes
Add symbol names,
variables, threads, etc
Automatic de-
duplication of crashes

and Reboot tracking, Log collection, Device attributes, powerful APIs.

Try this at home!
https://docs.memfault.com/docs/linux/quickstart

● Docker container to easily build Yocto
images

● Pre-configured for OTA with SWUpdate
and U-Boot

● Runs inside QEMU or on RasperryPis

Memfault Linux SDK

https://docs.memfault.com/docs/linux/quickstart

Thank You!

• Interrupt.com: OTA for Embedded Linux
SWUpdate Manual

• memfault.com
• twitter.com/memfault
• interrupt-slack.herokuapp.com

• We’re hiring!
Tyler Hoffman

https://interrupt.memfault.com/blog/ota-for-embedded-linux-devices
https://sbabic.github.io/swupdate/
https://memfault.com/
http://twitter.com/memfault
https://interrupt-slack.herokuapp.com/

Question: How to implement a boot
counter?
We can implement a boot counter using the
techniques presented earlier:

Question: Delta Updates

SWUpdate supports delta updates using ZChunk (FOSS)

- Update is again a full-filesystem image.
- It needs to be converted to the zchunk format which will add a

header with a checksum of each chunk in the update.

- SWUpdate will download only the header file and compare the
checksum of each chunk in the currently active partition to the
checksum in the new update
- If the checksum has not changed, SWUpdate will use data from

the active partition.
- If the checksum has changed, SWUpdate will download only

this chunk from the server.

- All download requests are executed using http range requests and
grouped together to be efficient.

See https://sbabic.github.io/swupdate/delta-update.html and
https://www.thegoodpenguin.co.uk/blog/delta-ota-update-with-swupdate/

https://sbabic.github.io/swupdate/delta-update.html
https://www.thegoodpenguin.co.uk/blog/delta-ota-update-with-swupdate/

Question: Verifying the source of the update

You can generate a public/private key to sign all updates and
ask swupdate to verify the signature of the updates before
installing them.
See https://sbabic.github.io/swupdate/signed_images.html

https://sbabic.github.io/swupdate/signed_images.html

