We make software the **most reliable part of the IoT**

We believe that observability, purpose built for embedded devices, gives developers the visibility they need to build super sophisticated, highly reliable products in even the most constrained environments.

We were **busy in 2023**

More support for more platforms

- More out-of-the-box Android metrics
- More control for Android OTA Updates
- Improved support for Qualcomm based devices
- Improved out-of-the-box support for more Linux distro's
- Session metrics and compact logging on MCU
- Support for Cortex-R based chips

More insights, more easily

- Completely customizable dashboards
- Fleet-wide reboot reason tracking
- Real-time data visibility in metric charts
- Multiple new chart types for metric data analysis
- Improved Issue management and triaging
- Increased configurability and control for alerting

And we have some more **exciting news** to share

But first, **some context**

Building devices is hard

۲ ۲

The ecosystem for building embedded devices is fragmented. Off-the-shelf doesn't really exist and every device is unique.

You have to write software to make everything work together and deliver a good quality experience.

圆

9

All within the constraints of intermittent connectivity, limited compute and limited power.

Development takes time

Things to know:

16 Months

Average development lifecycle

30%

of active projects are behind schedule

Reasons for delay:

23%

Technical obstacles

30%

complexity of the application or technology

The pressure is high

56

Average Engineering and Project Management **staff per Project**

Average Cost per **Development Project**

29%

Average percent of total spend on **Embedded Software**

21%

Average percent of total spend on **Electronic Engineering**

18%

Average percent of total spend on **Mechanical Engineering**

And it doesn't stop at launch

\$4MM Average Project Cost Average Project Cost Average Project Cost Average Project Cost Average expected useful lifespan for an embedded device 8 years

Quality problems can have a **big impact**

Measurable	RMA Cost	Cost for an	Customer
costs		Engineer site visit	Churn Cost
Unseen costs	Brand damage	Loss of future revenue	Staff stress and dissatisfaction

We don't know **how to measure** it

Cloud Deployments:

- Uptime 🔽
- Error Rate 🔽
- Latency 🔽
- MTBF 🔽

Embedded Devices:

• 5

• 🔅

Semfault

Measures we have are imperfect

Sales

•

Sales growth

Profitability

Support

- Number of tickets
- Spend on support

Returns

- Rate of returns
- Cost of returns

Feedback

- NPS surveys
- Customer interviews

Reviews

\diamond

"I just installed an update and now it's constantly crashing...this sucks. DO NOT WASTE YOUR MONEY ON THIS"

$\diamond \diamond \diamond \diamond \diamond$

"They said the battery is supposed to last 2 days but I am having to charge mine every night." ♦
♦
♦
When bluetooth
constantly disconnects
making these unusable."

Even if you can get data... what then?

Does the data actually tell you anything?

Can you use it to understand what's actually happening quickly?

Can you respond?

What if I asked you...

How often does your customer experience a crash in the field? How long is your battery life in the field, across all deployed devices?

How often do your devices fail to connect?

How long would it take?

And how confident would you be?

And could you explain why?

Why is battery life getting worse?

When did it start getting worse?

Did we change anything?

What if it took **60 seconds**...

And confidence in the data was so high you could send it straight to your boss. **Or your CEO.**

And you could go from fleet wide data to an individual device **in moments**.

DeviceVitals

How stable is my firmware in the field?

Have I made improvements in my latest release?

And are things getting **better** overtime?

Across **every device** in my fleet...

For the most critical measures

Device Vitals

Stability Crash-free hours

Connectivity

Sync Success or Uptime

Battery Expected Battery Life

Built-in on all SDKs

Available for every device

Deploy at any lifecycle state

All calculated automatically

Device Vitals

A simple, consistent set of measures for me and my team.

Helps me understand real-world performance better.

Lets me compare progress between releases and groups.

So I can identify problems quickly.

And prioritize with ease.

How does it work?

All metrics are built-in on all SDKs across MCU, Linux and Android

Once data is collected, each Vital is computed automatically by Memfault

Purpose built charts and cards available out-of-the-box

Built for **embedded** devices

Power

- Has almost no measurable battery impact.
- Collects full system data to help you improve efficiency.

 Works on your low power device

Connectivity

- Buffers data on device and sends when connectivity becomes available.
- Can chunk data into very small packet sizes (>=9 bytes).
- Works with any connectivity set-up

Compute

- Does not add any additional performance load to system.
- Lightweight on device profile
 4.5kB FLASH, 1.5kB RAM

 Works on highly constrained devices

Consistent across platforms

It works the same way, across all major embedded platforms

Android

Linux

And there's more

March 12th

Device Vitals

March 13th

Better data, better dashboards, better drill down

March 14th

Jira Integration

