
How to Monitor IoT
Devices at Scale
Tyler Hoffman, Co-Founder & Engineer
December 3, 2020

The Speaker

• Passion: developer tools and infrastructure
for embedded engineers and companies

• Previously a Firmware Engineer @ Pebble &
Fitbit

• Split time between writing firmware and
building internal services to help monitor
millions of devices

• Can find my thoughts and content on
Memfault's Interrupt blog
(interrupt.memfault.com)

Tyler Hoffman
Co-Founder & Engineer, Memfault

https://interrupt.memfault.com/

4 Collecting Metrics

5 Making Decisions with Metrics

Agenda

1 Monitoring Overview

2 What are Metrics?

3 Implementing Metrics

1 Monitoring Overview

Monitoring Strategies

Central
Server

Device Logs

Traces

Faults/Crashes

State Mirroring

Metrics

1. Ease of implementation

2. Measure "health" across
dimensions

3. Bandwidth and connectivity

4. Processing complexity

5. Scalability

6. Clock time not required (bonus)

Embedded Device Monitoring Criteria

v1.1

v1.0

External Internal

Monitoring Types Compared

Logging Tracing Fault & Crash
Analysis State Mirroring Metrics

Easy to Implement ✓ ✓ ■ ■ ✓

Fleet & Version
Health ■ ■ ■ ✕ ✓

Minimal Bandwidth ■ ■ ■ ✕ ✓

Cheap Infrastructure ✕ ■ ■ ✕ ✓

Can debug single
device issues ✓ ✓ ✓ ✕ ■

Where ✓ is a benefit, ■ is neutral, and ✕ is not a benefit.

4 Collecting Metrics

5 Making Decisions with Metrics

Agenda

1 Monitoring Overview

2 What are Metrics?

3 Implementing Metrics

2 What are Metrics?

A metric is a measurement captured at runtime

Metrics

Combing large numbers of metrics and calculating
statistics is called an aggregation

Proven methods for monitoring using metrics

• StatsD, Prometheus, OpenTelemetry
• Integers or floats
• Tags or Labels - firmware version and device serial
• Months and years of data
• Personally Identifiable Information (PII) unlikely

Metrics

Metric Event

FW Version: v1.1
Timestamp: 1605910419
Serial #: DA143532

Battery Life: 87%

Uncover trends on anything that is numerical

Common metrics are:
• Task runtimes
• Heap information
• Connectivity statistics
• Frequency of errors
• Peripheral utilization and power states

Pinpoint power, connectivity, and performance issues and regressions

Metrics

Aggregate Metrics

Counts
Averages
Min/Max

Central
Server

0110...

0001...

1110...

Per Device Entire Fleet

Counts
Averages
Min/Max

7.2 days battery life

1.7 reboots/day

87% connected

Product,
Engineering, &
Business Decisions

Metric Uses

Metrics serve three purposes:

0
25
50
75

100
125

3. Enable comparing metrics between firmware versions

1. View device's vitals over time

2. Assessing the collective health of all devices

Average Battery Life:
v1.0 - 5.5 days

v1.1 - 4.1 days

% Time Connected per Hour: 95% -> 77%

Battery Life %:

Metric Strengths

• Compare health across all devices and firmware
releases

• Battery life, connectivity, and performance
issues

• Highly compressed

• Negligible performance impact

• Simple instrumentation on device

Metric Weaknesses

•Awareness of potential issues

• SQL knowledge required

• Paradigm shift for embedded developers

• Supplemental monitoring solutions still
required

4 Collecting Metrics

5 Making Decisions with Metrics

Agenda

1 Monitoring Overview

2 What are Metrics?

3 Implementing Metrics

3 Implementing Metrics

Three Common Types of Metrics

*These are the three metric types from StatsD

Accumulated value for the
heartbeat durationCounter

Total time in a particular state for
the heartbeat durationTimer

Instantaneous values, set at
beginning or end of the heartbeatGauge

Periodic “pulse” sent from device to
a monitoring service

• Is a device functional?
• Vitals and metrics
• Metadata of the running firmware
• Packaged and batched up on a device

Constraints?
Send a heartbeat every minute, hour, or day

Device Hearbeats

Heartbeat

Firmware Version

Timestamp

Interval Duration

Device Serial

Metrics

Implementing Heartbeats & Metrics

Building out a heartbeat and each metric type by providing a few examples

Using source code from a simple device heartbeat library I wrote for the Interrupt post on
the topic.

https://interrupt.memfault.com/blog/device-heartbeat-metrics

https://interrupt.memfault.com/blog/device-heartbeat-metrics

Implementing Heartbeats & Metrics

Implementing Device Heartbeats

Metric ID Definitions

typedef enum {
kDeviceMetricId_INVALID = 0,
kDeviceMetricId_ElapsedTime = 1,
kDeviceMetricId_MainTaskTime = 2,
kDeviceMetricId_TimerTaskTime = 3,
...

} eDeviceMetricId;

Metric ID’s - unsigned integers (1-4 bytes)

Metric values - integers or floats (4 bytes)

Source code: https://interrupt.memfault.com/blog/device-heartbeat-metrics

https://interrupt.memfault.com/blog/device-heartbeat-metrics

Implementing Device Heartbeats

Device Metrics API

// Counters
void device_metrics_incr(eDeviceMetricId metric_id);
void device_metrics_incr_by(eDeviceMetricId metric_id,

int32_t n);

// Timers
void device_metrics_timer_start(uint32_t *start);
void device_metrics_timer_end(eDeviceMetricId metric_id,

const uint32_t *tick_buf);

// Gauges
void device_metrics_set(eDeviceMetricId metric_id,

int32_t value);

// Hourly Flush
void device_metrics_flush(void);

Source code: https://interrupt.memfault.com/blog/device-heartbeat-metrics

https://interrupt.memfault.com/blog/device-heartbeat-metrics

4 Collecting Metrics

5 Making Decisions with Metrics

Agenda

1 Monitoring Overview

2 What are Metrics?

3 Implementing Metrics

4 Collecting Metrics

Counter Metric

Accumulated value for heartbeat
duration

Useful for:
Detecting behavioral differences of firmware and
devices between releases and over time

Examples:
• bytes sent/received
• connectivity events
• flash operations
• mutex_lock failures
• # times a feature was used

Counter Metric

Adding counters is easy…just add a single line!

Source code: https://interrupt.memfault.com/blog/device-heartbeat-metrics

void flash_sector_erase(uint16_t sector) {
...
device_metrics_incr(kDeviceMetric_FlashSectorErases);

}

void flash_write_bytes(uint32_t addr, void *buf, size_t n) {
...
device_metrics_incr_by(kDeviceMetric_FlashWriteBytes, n);

}

https://interrupt.memfault.com/blog/device-heartbeat-metrics

Counter Metric

RAM-backed value that is incremented

Source code: https://interrupt.memfault.com/blog/device-heartbeat-metrics

void device_metrics_incr_by(eDeviceMetricId metric_id,
int32_t n) {

int32_t *val = prv_get_value_ptr(metric_id);
*val += n;

}

https://interrupt.memfault.com/blog/device-heartbeat-metrics

Timer Metric

Stores amount of time spent in a particular state

Useful For:
Detecting regressions in performance and user-experience, and
battery life.

Examples:
• CPU utilization & sleep time
• Connectivity radio utilization
• Sensor & peripheral utilization
• Task utilization
• Time spent in syscalls

Timer Metric

Two lines of code

Source code: https://interrupt.memfault.com/blog/device-heartbeat-metrics

static uint32_t s_wifi_ticks;

void wifi_connected_callback(void) {
// Start timer when Wi-Fi connects
device_metrics_timer_start(&s_wifi_ticks);

}

void wifi_disconnected_callback(void) {
// Stop timer when Wi-Fi connects
device_metrics_timer_end(kDeviceMetricWifiConnectedDuration

&s_wifi_ticks);
}

https://interrupt.memfault.com/blog/device-heartbeat-metrics

Timer Metric

Measure Task Utilization

Source code: https://interrupt.memfault.com/blog/device-heartbeat-metrics

static void prvAltTask(void *pvParameters) {
uint32_t task_tick;
while (1) {

unsigned long received;
xQueueReceive(xQueue, &received, portMAX_DELAY);

device_metrics_timer_start(&task_tick) {

// Do work

device_metrics_timer_stop(kDeviceMetricId_AltTaskTime,
&task_tick) {

}
}

https://interrupt.memfault.com/blog/device-heartbeat-metrics

Gauge Metric

Instantaneous values from beginning or end of
interval

Useful for:
Obtaining a sampling of the system state and calculating
prevalence of an issue across a fleet.

Examples:
• Battery Life
• Battery drain during interval
• Current heap bytes used/free
• Heap & stack high-water marks

Gauge Metric

Captured at flush time.

void device_metrics_flush(void) {
...
static int32_t s_prev_battery_pct;

const int32_t current_battery_pct = battery_get_pct();
const int32_t battery_delta =

current_battery_pct - s_prev_battery_pct;

device_metrics_set(kDeviceMetricId_BatteryLifeDrain,
battery_delta);

}

Source code: https://interrupt.memfault.com/blog/device-heartbeat-metrics

https://interrupt.memfault.com/blog/device-heartbeat-metrics

Heartbeat Interval Flush

A timer can be used to flush metrics every hour

TimerHandle_t metrics_flush_timer =
xTimerCreate("heartbeatFlush",

1000 * 60 * 60, /* interval */
pdTRUE,
(void*)0,
prv_metrics_flush);

xTimerStart(metrics_flush_timer, 0);

Source code: https://interrupt.memfault.com/blog/device-heartbeat-metrics

At flush time:
• Set gauge values
• Metric values are flushed to persistent storage
• Reset metrics

https://interrupt.memfault.com/blog/device-heartbeat-metrics

Memfault Heartbeats

Simple Heartbeat Library
https://interrupt.memfault.com/blog/device-heartbeat-metrics

Memfault Heartbeat Library
https://github.com/memfault/memfault-firmware-sdk

https://interrupt.memfault.com/blog/device-heartbeat-metrics
https://github.com/memfault/memfault-firmware-sdk

Heartbeat Best Practices

1 Reset data after each heartbeat

2 Include metadata with heartbeats

3 Be creative

Source code: https://interrupt.memfault.com/blog/device-heartbeat-metrics

https://interrupt.memfault.com/blog/device-heartbeat-metrics

Resetting Counters

• Easily spot issues and trends
• Resilient against resets and data loss
• Simpler math

Source code: https://interrupt.memfault.com/blog/device-heartbeat-metrics

https://interrupt.memfault.com/blog/device-heartbeat-metrics

Include Metadata with Heartbeats

Heartbeat

v1.0.1

1605910419

3600

DA143532

MainTaskMs

300291

Heartbeat

Firmware Version

Timestamp

Interval Duration

Device Serial

Metrics

Be Creative

An int32_t can store a lot of data!

Bitfields Device Configuration 32 booleans

Register Values Hardware Readings 4 ASCII chars

What about logs?

Transform logs into metrics?

Not really…

[I][1605794400] Wi-Fi connected
[W][1605796200] Wi-Fi disconnected, reason: -2
[I][1605796500] Wi-Fi connected
[W][1605797100] Wi-Fi disconnected, reason: -2
[I][1605798000] Battery status: 67%, 3574 mV

Transforming Logs

[I][1605794400] Wi-Fi connected
[W][1605796200] Wi-Fi disconnected, reason: -2
[I][1605796500] Wi-Fi connected
[W][1605797100] Wi-Fi disconnected, reason: -2
[I][1605798000] Battery status: 67%, 3574 mV

wifi_connected_s: 144000
battery_life_pct: 67

Transforming Logs

What if a log is missed? Or the device hiccups?

[I][1605794400] Wi-Fi connected
------------- MISSING LOG ----------------
[I][1605796500] Wi-Fi connected
[W][1605797100] Wi-Fi disconnected, reason: -2
[I][1605798000] Battery status: 67%, 3574 mV

wifi_connected_s: ??????
battery_life_pct: 67

Transforming Logs

Dropped logs = we can’t reliably calculate metrics

Also:
• Complex log processing
• Developers update logs constantly
• Higher bandwidth requirements

From my experiences of monitoring 2M+ devices:
Generating metrics directly is easier

4 Collecting Metrics

5 Making Decisions with Metrics

Agenda

1 Monitoring Overview

2 What are Metrics?

3 Implementing Metrics

5 Making Decisions with Metrics

Are we good to ship this firmware?

Go / No-Go Metrics

Battery Life

Connectivity

Stability

Projected Days
of Battery Life

% Connected
per Hour

% Crash-Free
Hours

Do not ship firmware without hitting your metrics.

Projected Battery Life

= 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝐻𝑜𝑢𝑟𝑠 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐿𝑖𝑓𝑒

100 ÷
𝑇𝑜𝑡𝑎𝑙 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 % 𝐷𝑟𝑎𝑖𝑛𝑒𝑑 𝑂𝑣𝑒𝑟 𝐴𝑙𝑙 𝐻𝑒𝑎𝑟𝑡𝑏𝑒𝑎𝑡𝑠

𝑜𝑓 𝐻𝑒𝑎𝑟𝑡𝑏𝑒𝑎𝑡𝑠

Projected Battery Life

Average percent battery drain = 2%

100 ÷ 2	=	50 Projected	Hours	Battery	Life

100 ÷
𝑇𝑜𝑡𝑎𝑙 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 % 𝐷𝑟𝑎𝑖𝑛𝑒𝑑 𝑂𝑣𝑒𝑟 𝐴𝑙𝑙 𝐻𝑒𝑎𝑟𝑡𝑏𝑒𝑎𝑡𝑠

𝑜𝑓 𝐻𝑒𝑎𝑟𝑡𝑏𝑒𝑎𝑡𝑠

% Time Connected per Hour

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑒𝑐𝑜𝑛𝑑𝑠 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑂𝑣𝑒𝑟 𝐴𝑙𝑙 𝐻𝑒𝑎𝑟𝑡𝑏𝑒𝑎𝑡𝑠
3600 𝑠𝑒𝑐𝑜𝑛𝑑𝑠

× 100

= % 𝑇𝑖𝑚𝑒 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑝𝑒𝑟 𝐻𝑜𝑢𝑟

% Time Connected per Hour

Average time connected is 3500 (out of 3600) seconds for all devices:

3500
3600 × 100 = 97.2% Time Connected per Hour

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑒𝑐𝑜𝑛𝑑𝑠 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑂𝑣𝑒𝑟 𝐴𝑙𝑙 𝐻𝑒𝑎𝑟𝑡𝑏𝑒𝑎𝑡𝑠
3600 𝑆𝑒𝑐𝑜𝑛𝑑𝑠

× 100

% Crash-Free Hours

By recording whether a device crashed during a heartbeat interval

1 −
𝐶𝑟𝑎𝑠ℎ𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠
𝑇𝑜𝑡𝑎𝑙 𝐻𝑜𝑢𝑟𝑠

×100 = % Crash−Free Hours

% Crash-Free Hours

1 −
𝐶𝑟𝑎𝑠ℎ𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠
𝑇𝑜𝑡𝑎𝑙 𝐻𝑜𝑢𝑟𝑠

×100 = % Crash−Free Hours

2000 hours out of 24000 had a crash:

1 −
2000
24000 ×100 = 91.6% Frash−Free hours

7 day average between crashes => 99.5% crash-free hours

4 Collecting Metrics

5 Making Decisions with Metrics

Agenda

1 Monitoring Overview

2 What are Metrics?

3 Implementing Metrics

So we built…

Brief Demo

Memfault & Metrics

•Open-source firmware SDK
•Heartbeat module included
• Turn-key integrations
•We deal with scaling

Trusted By

That’s all!

THANKS! https://www.linkedin.com/in/tyhoff/

@ty_hoff

tyler@memfault.com

https://interrupt.memfault.com

https://www.linkedin.com/in/tyhoff/
mailto:tyler@memfault.com
https://interrupt.memfault.com/

