
Launching an
IoT Device
A Blueprint to Success

François Baldassari
Founder & CEO, Memfault

• Passion: tooling and automation in software
engineering

• Previously a Firmware Engineer @ Pebble,
Oculus, Sun Microsystems

• Can find my thoughts and content on Memfault's
Interrupt blog (interrupt.memfault.com)

https://interrupt.memfault.com/

Shipping on Time

De-Risking Launch

Q & A

Agenda

Shipping on time
⏱

NPI Timeline

NPI Timeline

NPI Timeline

NPI Timeline

NPI Timeline

NPI Timeline

Poll #1

How long did
NPI take on
your last
product?

A. <= 12 months

B. <= 18 months

C. <= 2 years

D. > 2 years

What about firmware?

What about marketing?

What about factory automation?

What about cloud software?

Avoid a dependency spiral

Splitting Manufacturing and App Firmware

A Strong HAL

Day-0 Updates

Test Driven Development

Decoupling SW & HW Timelines

2.

3.

4.

1.

Test-Driven Development

Building firmware against a software
test harness rather than real
hardware. This can include the use
of unit testing frameworks (e.g.
CppUTest) and simulators (e.g.
Renode).

● Allows for development to proceed
before hardware is ready

● Faster iteration speed
● Creates a robust set of tests which can

be reused to support development

Learn more

- https://interrupt.memfault.com/blog/unit-testing-basics
- https://interrupt.memfault.com/blog/intro-to-renode

What it is Why Do It

https://interrupt.memfault.com/blog/unit-testing-basics
https://interrupt.memfault.com/blog/intro-to-renode

Day-0 Update

Preparing a software update applied
to the devices at unboxing. This
update needs to be ready by the
time devices are in customers’
hands rather than at manufacturing.

● Decouple dependency between ramp
and software GM

● Extend software development
schedule by >4 weeks

What it is Why Do It

Day-0 Update

A Strong HAL

Use a cross-platform operating
system and hardware abstraction
layer that can easily be ported to
new hardware. The Zephyr project is
an excellent option with strong
backing from semiconductor and
device manufacturers.

● Decouple firmware from the underlying
hardware

● Create optionality in the event of
supply chain constraints

● Lay the ground for code re-use on
future programs

What it is Why Do It

Learn more
- https://www.zephyrproject.org/

https://www.zephyrproject.org/

Splitting Manufacturing
and App Firmware

Use a purpose built firmware on the
manufacturing line which changes
very rarely and is completely
separate from the application
firmware. Load the app firmware at
the last test station on the line.

● Iterate on the application FW without
impacting the manufacturing FW

● Continue working on app FW after
DVT when factory processes are
locked

● Save code space

What it is Why Do It

But!!

Watch out for dependencies
between app and manufacturing
firmware (e.g. sensor configuration.

De-risking Launch

Congratulations, you’ve launched!

Not so fast…

Bugs

Security Issues

Missing Features

Customer Complaints

RMAs

v

This Will Happen to You!

● Ganssle: “10-100 defects
per 1000 lines of code”

● Some of these issues will
be severe, some will be
security flaws

● Law of large numbers:
some issues will only be
found in production

“ “This is the third upgrade
version since Curiosity's
landing on Mars 16 months
ago [...]. An earlier switch to
version 11 prompted an
unintended reboot on Nov. 7
and a return to version 10, but
the latest transition went
smoothly.”

https://www.nasa.gov/jpl/msl/mars-rover-curiosity-20131220/

https://www.nasa.gov/jpl/msl/mars-rover-curiosity-20131220/

Robust OTA Remote
Debugging

De-Risk with Fleet Reliability Engineering

Performance
Metrics

Robust OTA

OTA is your insurance policy
against issues

It needs excellent test
coverage!

At the very least, your
system should support
cohorts, staged rollout,
and must-pass-through
releases

Cohorts

Grouping your devices, and
updating each group separately

What it is

Cohorts are a simple way to enable
beta tests, A/B tests, and other
forms of experimentation

Why You Need It

Cohorts with Memfault:

Staged Rollouts

The ability to roll out a new release
to an incrementally larger sub-set of
the fleet.

What it is

Every release introduces risk. By
rollout out updates incrementally,
you limit the blast radius of any new
issue that comes up.

Why You Need It

Staged rollouts with Memfault:

Must-Pass Through

A release which must be loaded on
the device before future releases
can be installed.

What it is

Some complex migrations may not
be forward compatible. For
example, upgrading from 1.2 to 3.8
might require multiple steps:
1.2 → 2.0 → 3.0 → 3.8

Why You Need It

Must-pass-through with Memfault:

Performance Metrics

Connectivity

Memory Usage

Sensor Performance

System Responsiveness

Battery Life

This system must be:

1. Low overhead (no device
impact)

2. Easy to extend
3. Privacy preserving

“How are my devices doing?”

Individual Device Metrics

Collection of datapoints from
devices at regular intervals.

What it is

To investigate specific reports of
devices misbehaving, either by
customer support or engineering
teams

Why You Need It

Device Metrics with Memfault:

Aggregates and
Dashboards

Dashboards aggregating individual
data into high level charts

What it is

To understand overall fleet
performance and quickly identify
trends in the data

Why You Need It

Dashboards with Memfault:

Alerts

Alerts to email, slack or incident
management platforms when certain
conditions are met

What it is

To bring issues to your attention
quickly, rather than wait for the next
time you look at the charts

Why You Need It

Alerts with Memfault:

Remote Debugging

Customer
Reports

Customer
Reports

Customer
Reports

Customer
Reports

Support Team

RMA

RMA

Manual Logs

Engineers

2+ Weeks

“Audio Drops Randomly”

“Bluetooth Disconnects”

Error Report
(5 instances
duplicated)

Remote Debugging

Automated
Reports

Automated
Reports

Automated
Reports

Automated
Reports

Cloud Analysis Logs Engineers

2 minutes

Register

Memory Backtrace

Coredumps

Automatically collect detailed
diagnostics data as soon as an
issue occurs

What it is

Give your engineers the information
they need to resolve the problem
quickly, without an RMA or sending
out a technician

Why You Need It

Coredumps with Memfault:

Poll #2

Which
infrastructure
do you have in
place?

Check all that apply…

A. OTA

B. Metrics

C. Remote Debugging

D. None of the above

Memfault: Fleet Reliability Engineering Platform

Q&A

