
Unique
Software
Versions

Each software build needs a unique
identifier to differentiate it from other
builds. Ideally, this version will follow a
standard format (such as Semantic
Versioning).

Requirement Details

Software Build Capabilities

Store and Index
Software Build
Artifacts

Multiple software builds will be used in
the field at any given time. Because
function and variable address locations
will change from one build to another,
you must be able to access build
artifacts for all versioned builds to
debug them appropriately.

Debug Log

Requirement

Device-Side Capabilities

Reset Reason
Detection

On-Device
Crash Dumps

Details

Enables developers to write strings and
values in a human-readable format
that can be read back later to find error
messages or recreate a sequence of
events that occurred on the device.

Many processors have a status register
that indicates why the system
(re)booted. The system should also
write the cause for a manual reboot to
a known, reserved memory location.

On boot, this information can be read,
logged, and used to determine
whether specific fallback behaviors will
be executed (e.g., boot into a fail-safe
build when an infinite processor fault
loop is detected).

When an assertion or processor fault
occurs, the software can automatically
collect, display, and store commonly
collected debug information: software
version, values of local variables,

Risks

You cannot correlate information in
device logs, crash dumps, and debugger
output with a specific version of software,
making it difficult-to-impossible to
properly interpret debug information.

You also have no idea where to start your
investigation, since you have no idea what
changes are present on the device

Debugging without the debug symbols
or map file for a given build means that
you cannot properly decode addresses
into functions, variables, and specific lines
of code.

Without a foolproof system in place for
storing and indexing artifacts, these files
can go missing or be mislabeled.

Risks

Debugging sealed or production units
with a debugger is often difficult or
impossible. Devices that are unable to be
retrieved (e.g., they are in another
country) are impossible to debug in a
systematic way without an RMA process.

It becomes difficult-to-impossible to
detect the reason why the system resets
due to abnormal causes (e.g., watchdog
timeout, brownout) and whether your
device is stuck in an infinite reboot loop

Faults and assertions that occur in the
field cannot be easily debugged by
developers due to lack of context and
information…

www.embeddedartistry.com | www.memfault.com

IoT Device Observability
Requirements Checklist

Reproducing the issue with a debugger
attached is likely the only recourse, and
this significantly lengthens the
debugging process by days or weeks.

Device
Metrics

Without device metrics, development
teams could introduce performance,
power, or stability regressions into
firmware upgrades without knowing.

Without metrics on usage, the company
will have little insight into how devices are
used by customers, making it difficult to
assess the value of past and future
product investments.

Persistent
Storage

register values, a call stack backtrace,
function inputs, and contents of the
internal log buffer (if used).
Automating this process improves the
speed and ease with which developers
can debug issues and enables them to
debug assertions and faults without a
debugger physically attached to the
device.
f

Development teams want to track
battery life, power consumption,
memory usage and more. Product
teams and executives want insight
into how often features are where
engineering investments should be
made.

The device needs a way to log this
information for future collection and
analysis.

Key debugging information should be
saved to persistent storage (e.g., SD
card, flash) so that information can be
recovered even if power is lost.

When RMA units are received, critical
debugging information will persist on
the device.

The device will only be able to report
information that occurred since the most
recent boot-up / power sequence.

Devices with limited RAM risk having
older-yet-still-valuable debug information
overwritten before it can be reported.

Automated
Symbolication
of Crash Dumps

Every time a developer looks at a crash
log, they must manually convert the
addresses to function/variable names and
offsets within functions.

The tedium of this process means that
crash logs will not be used by the
development team for debugging except
for the direst circumstances.

Requirement Risks

Debugging Infrastructure

Automatic Issue
Detection

Developers must manually review logs
and crash dumps and file tickets for new
issues. Because this process is both
manual and time-consuming, it will cause
a delay between when a problem is
introduced and when it is noticed by the
team.

Automatic Issue
De-duplication

Details

The raw addresses from crash dumps
(e.g., 0x8000ABCD) need to be
symbolicated into human-readable
variable/function names (e.g.,
main.c::325) using the debug symbols
or map file.

When a team becomes flooded with issue
reports, manually triaging reports
becomes a bulk processing task due to its
time-consuming and soulless nature. New
issues, potentially critical ones, will be
missed while waiting for someone to
triage the backlog of issue reports.

www.embeddedartistry.com | www.memfault.com

If one device is seeing a problem, the
odds are high that other devices will
see the problem as well, causing the
team to be flooded with issue reports.
Software automation can be employed
to identify duplicate issues without
manual developer involvement and to
annotate issues with occurrence rate
across software versions.

Crash dumps are positive indications
of problems with the software.
Software automation can be used to
convert collected crash dumps (and
other error scenarios) to issue reports.
Developers can be notified
immediately when a new issue is
detected.

Device Data
Collection

Devices must be able to send
information to the centralized
monitoring system, including reset
reason, crash dumps, debug logs, and
device metrics.

Once in the monitoring system, data
can be aggregated and further
investigations can be made.

Without access to the rich array of
information provided by devices, fleet
monitoring is impossible.

Rather than detecting issues
automatically during a firmware update
rollout, the first signs of trouble will be
customer support calls and angry tweets.
By then, it’s too late.

Requirement Details Risks

Remote Monitoring and Management

Heartbeat
Messages

Devices should send periodic
“heartbeat” messages to the
monitoring system to indicate that
they are alive and well. Messages
should be sent on boot and at a regular
interval.

Without a check-in on boot, it is hard to
determine whether a remote software
update was successful.

Without periodic check-ins, it is difficult to
know whether devices in the field are
functioning properly or stalled/frozen

Issue Alerting Remote monitoring software should
observe debug information, check-ins,
and device metrics. In addition to
de-duplicating and filing issues when
crash dumps are received, the system
should automatically report issues
when certain conditions are met (e.g., a
device doesn’t check in within a certain
period of time after an update, a
device’s power level drops below a
specific threshold).

Developers must spend time manually
monitoring incoming device data for
problems. Manual monitoring will involve
delays, and potentially important
problems will not be caught as early as
they could have with automatic detection.

View of
Device-Level
Metrics Over Time

Device metrics should be collected into
a view that can show how the metrics
for a single device change over time.
This provides deeper insight into how a
single device is performing and
enables correlations between metrics
(e.g., observing that a large power drop
correlates with a spike in CPU usage).
This view is critical for customer
support teams

Factors leading to the degradation of a
device’s performance over time may not
be noticed, increasing debugging
difficulty. It also increases the difficulty in
providing preventative maintenance and
support.

View of Fleet-Level
Metrics Over Time

Fleet-wide parametric data metrics can
be aggregated so that your team can
gain insight into the total population of
devices. With this view, your team can
observe trends and spot regressions of
key metrics after updates, between
software versions, and in relation to
external factors (e.g., mobile phone or
gateway updates).

Without fleet-wide metrics, your team will
primarily be looking only at problematic
devices (i.e., those that trigger issue alerts)
or noisy customers.

Cohort Binning of
Devices

You should be able to group specific
devices together in a “cohort”, such as
“development devices”, “beta testers”,
and “standard customers”. You should
be able to filter devices based on their
cohort when viewing fleet-level metrics
and performing updates.

Without the ability to put devices into
cohorts, it becomes difficult to separate
internal development devices, beta test
devices, and standard customer devices
from one another, impacting our analysis
of fleet-level metrics and making it
difficult to control which devices receive
which software versions.

www.embeddedartistry.com | www.memfault.com

