
Automated Failure
Analysis of Remote
Edge Devices
at Scale
Tyler Hoffman

2

Speaker
Tyler Hoffman, Co-founder @ Memfault

Previously a Firmware Engineer @ Pebble & Fitbit

Split time between writing & debugging firmware and
building internal services to help monitor millions of
devices.

Can find my thoughts and content on Memfault's
Interrupt blog: interrupt.memfault.com

2

https://interrupt.memfault.com/

3

What are we trying to do today?

• Talk about firmware on embedded MCU systems

• Speed from development to testing to mass production and scaling

• Find and fix (quickly) 1 in 10,000 hour bugs in production

• Prevent issues from being released to 100% of users

• Establish measurable stats to track progress on goals

3

4

One of my favorite quotes

“These techniques are not necessary because experienced firmware

engineers do not introduce bugs in their code”

- A (real) Firmware Engineer

4

5 5

1

2

3

4

5

State of the union

Quantifying current issues

Analyzing the issues

Preventing future issues

Best Practices

Agenda

6

State of the union for firmware

6

7

Firmware is pervasive, but difficult

• In Q4 2020, 4.4 billion Cortex M’s shipped
• Tons and tons of firmware running on these devices
• Very few tools to help debug these devices
• Software is becoming more complex - leads to bugs
• Software issues lead to:

• Bricked devices, RMA’s, and security exploits

7

We need proper tools to help us build quality products

8

Increasingly complex topologies

8

Zigbee

LoRa

Wi-Fi

BLE

Satellite

Servers

Gateways

Routers

Mobile Phones

Mesh Networks

9

Increasingly complex software

• Firmware no longer is complete isolated
• Must communicate to mobile phones & gateways
• Protocols, devices, and security issues constantly changing
• Libraries are massively complicated (e.g. mbedTLS)

• Expectations are growing
• Everything connects to Internet
• Must enable firmware updates
• Competition is growing

9

10

Rudimentary Debugging Tools

10

[I][1605794400] Wi-Fi connected
[W][1605796200] Wi-Fi disconnected, reason: -2
[I][1605796500] Wi-Fi connected
[W][1605797100] Wi-Fi disconnected, reason: -2
[I][1605798000] Battery status: 67%, 3574 mV

***** MPU FAULT *****
Instruction Access Violation

***** Hardware exception *****
Current thread ID = 0x20000074
Faulting instruction address = 0xe0000000
Fatal fault in thread 0x20000074! Aborting.

The existing tools are decent, but only when connected using JTAG

11

Debugging Data Exported to ???

11

Serial Logs

Reset
Registers

Simple
Metrics

Outputs

(Black Hole)

12

Not much exists to help us
• Existing software solutions won’t work

• We aren’t monitoring 10-100 servers, rather 10k – 1m+ devices
• We don’t have MB’s and GB’s of RAM lying around, we have KB’s
• Assembly, C, C++, Rust (?)
• Symbol files (.elf’s) required for typical debugging experiences
• AWS IoT,

• Few existing solutions that can help embedded devices
• Firmware is not an open-source ecosystem or sharing community

12

Whatever we need, we have to build ourselves

13

Some issues will only happen in the field

13

“a third of all software faults take more than
5000 execution-years to manifest

themselves.”

*Source: http://www.ganssle.com/tem/tem417.html

http://www.ganssle.com/tem/tem417.html

14 14

1

2

3

4

5

State of the union

Quantifying current issues

Analyzing the issues

Preventing future issues

Best Practices

Agenda

15

Detecting Current Issues

15

Do we have issues in the field…

They’re likely having issues

16

Detecting current issues
Fundamentally, we need to know if and how many times
devices are experiencing issues.

Once we have this information
• Can assess whether further work is needed.
• Can make assumptions about whether a firmware update improved stability
• Can guide business & product decisions
• Leaders know whether it’s time to fix bugs and tech debt or build new features

16

17

Detecting current issues
void buggy_function(void) {

*(uint32_t *)0xbadcafe = 0x0;

}

17

void HardFault_Handler(void) {

// … fault handling code ...

NVIC_SystemReset();

}

18

Detecting current issues

::::::: LOGS ::::::::

ERROR: Connection lost - reason -7

18

19

• Sending & Parsing logs
• Log important device events
• Log resets and registers
• Hard and doesn’t scale well

• Tracking simple metrics
• # device resets
• # devices alive and well
• Average uptime of devices
• Scalable, but less information

Detecting current issues

19

Requirements:

1. Path to the Internet
2. Central repository for device data

20

Detecting current issues

20

Reset
{

“reason”: “watchdog”,
}

“ble_connected_s”: 3212

Aggregate!
Watchdogs: 67
Hardfaults: 23
Shutdowns: 17

Average BLE Connected per hour: 3212 seconds
% Connected per hour: 89%Hourly

Heartbeat

“uptime”: 86345
Number devices: 890
Average Uptime: 90,234 seconds

“main_stack_min”: 16
Stack low watermark is 16 bytes on some
devices. Yikes!

21 21

1

2

3

4

5

State of the union

Quantifying current issues

Analyzing the issues

Preventing future issues

Best Practices

Agenda

22

Analyzing the Issues

22

We have issues. How do we fix them?

23

Debugging in Production
• We don’t have access to our normal toolset.

• No UART & serial logs
• No JTAG and quick re-flashing
• No IDE, GDB, or step-through debugging
• RMA’s take weeks. Devices must persist the data.

• We need tools specifically for debugging in production
• Build these tools as early as possible
• Having them early will pay off 10x (Speaking from experience)
• If you have no interest in building them, check out Memfault

23

24

Using Logs to Analyze Issues

2 Wi-Fi disconnect events
1 Battery level event

24

[I][1605794400] Wi-Fi connected
[W][1605796200] Wi-Fi disconnected, reason: -2
[I][1605796500] Wi-Fi connected
[W][1605797100] Wi-Fi disconnected, reason: -2
[I][1605798000] Battery status: 67%, 3574 mV

***** MPU FAULT *****
Instruction Access Violation

***** Hardware exception *****
Current thread ID = 0x20000074
Faulting instruction address = 0xe0000000
Fatal fault in thread 0x20000074! Aborting.

1 crash due to MPU violation

Program Counter:
0xe0000000

25

Using Coredumps to Analyze Issues
• What is a coredump

• A snapshot of RAM regions at a
specific moment in time.

• Can be captured on command, or at
time of a fault, such as a hardfault or
ASSERT.

• Helps with post-mortem debugging
• Requires symbol file & clever parsing

• What RTOS’s support coredumps
natively?
• ESP32, Zephyr RTOS, MyNewt RTOS
• Any RTOS with Memfault

25

Coredump

Firmware Version

Timestamp

Device Serial

Hardware Revision

Memory
Regions

26

Using Coredumps to Analyze Issues

26

void HardFault_Handler(void) {

// … fault handling code ...

NVIC_SystemReset();

// Don’t just crash…

capture_coredump();

}

Coredump

Firmware Version

Timestamp

Device Serial

Hardware Revision

Memory
Regions

27

Using Coredumps to Analyze Issues
A coredump is comprised of raw memory regions

• From coredumps, one can recover:
• Threads and stacktraces
• Heap allocations and statistics
• Global variables
• Local variables and function arguments
• System and peripheral registers
• Anything else you want to collect (and parse)

27

Memory Regions

28

Using Coredumps to Analyze Issues

28

Threads, backtraces, local variables, and registers

29

Using Coredumps to Analyze Issues

29

Parse and interpret system registers

30

Using Coredumps to Analyze Issues

30

View all global variables at time of coredump

31

Coredumps – What can I debug?
• Crashes and other items worth extra

investigation
• Hardfaults, Memfaults, Asserts, etc.
• Deadlocks, system stalls
• Memory corruption issues
• Heap out-of-memory
• Stack overflows
• Undefined behavior

(”SHOULD NEVER HAPPEN” 😉)

31

https://embeddedartistry.com/blog/2021/01/11/hard-fault-debugging/

https://embeddedartistry.com/blog/2021/01/11/hard-fault-debugging/

32

When Coredumps Aren’t Enough
• Coredumps aren’t the perfect solution for all

issues
• Behavioral bugs require more of a timeline than a

snapshot (if this & this, then that)
• Devices with storage or bandwidth constraints
• Issues in interpreted languages (MicroPython,

JerryScript)
• Determining trends

• When you need context before a crash…
• Use logging or simple tracing
• Store log lines in a RAM buffer, send it with

coredump!

32

33 33

1

2

3

4

5

State of the union

Quantifying current issues

Analyzing the issues

Preventing future issues

Best Practices

Agenda

34

Preventing Issues

34

We fixed the issues. How do we don’t introduce more?

35

Internal Testing
• You must be testing the devices internally

• Catch and fix as many bugs before production as
possible

• Firmware team, QA, engineers, and other employees
• Ask biggest fans of your product to be beta testers
• Encourage users to report bugs
• Less concerns around privacy & data collection

• Build and deploy nightly or regular firmware
updates to devices
• Constantly be fixing and verifying fixes
• Perform experiments!

35Unfortunately, some bugs will only be caught in production.

Your device just
reset. Please submit
a support ticket!

36

Staged Rollouts
• Send out firmware updates in a controlled

manner
• Send it out to 5%, then 10%, then 20%, etc.
• At each step, assess quality and performance
• New issues? – pull the firmware update!

• How to implement staged rollouts?
• Hosted firmware update solutions have this feature
• At the very least, can set up devices to poll once

every 24 hours (random interval) for new firmware
update

36

100 devices

1,000 devices

10,000+ devices

…wait a few days

…wait a few days

37

Metrics
Uncover trends on anything that is numerical

• Common metrics are:
• Task runtimes
• Heap information
• Connectivity statistics
• Frequency of errors
• Peripheral utilization and power states

37

Pinpoint power, connectivity, and performance issues and regressions

38

Metrics

38

void flash_sector_erase(uint16_t sector) {
...
device_metrics_incr(kDeviceMetric_FlashSectorErases);

}

void flash_write_bytes(uint32_t addr, void *buf, size_t n) {
...
device_metrics_incr_by(kDeviceMetric_FlashWriteBytes, n);

}

https://interrupt.memfault.com/blog/device-heartbeat-metrics

https://interrupt.memfault.com/blog/device-heartbeat-metrics

39

Metrics

39

Counts
Averages
Min/Max

Central
Server

0110...

0001...

1110...

Per Device Entire Fleet

Counts
Averages
Min/Max

7.2 days battery life

1.7 reboots/day

87% connected

40

Metrics
We can compare metrics between firmware versions

40

v1.0.0 v1.1.0

1.3 daysAverage Uptime 1.32 days -

CPU sleep time 83% 96% 📈

Stack bytes free – low water mark 150 bytes 72 bytes 📉

Improvement?

41 41

1

2

3

4

5

State of the union

Quantifying current issues

Analyzing the issues

Preventing future issues

Best Practices

Agenda

42

Best Practices
My Favorite Practices

42

Sharing my tips & tricks monitoring millions of devices
with proper tooling in place

43

Life With Debugging Infrastructure
If you have logs & coredumps being sent from
devices, you can employ what I call offensive
programming.

This is the proper way to debug “in production”
• During runtime, raise errors immediately!

• Bring bugs front and center
• Undefined behavior – reset to a known state
• Assume that if bugs are raised early and often,

they can be fixed before shipping
• With a handful of devices, the 1 in 10,000 hour

bugs can be caught

43

https://interrupt.memfault.com/blog/defensive-and-offensive-programming

BAD BAD BAD BAD

https://interrupt.memfault.com/blog/defensive-and-offensive-programming

44

Use ASSERT() Liberally

44

Argument validation

45

Use ASSERT() Liberally

45

Assert on heap exhaustion

46

Use ASSERT() Liberally

46

Easily capture and diagnose timing issues

47

Use ASSERT() Liberally

47

State machine transition violations

48

Erase after free

48

Zero out allocations after free

Now standard in iOS 16.1 and macOS Ventura**

49

The End

▪ Happy to connect!

▪ https://www.linkedin.com/in/tyhoff/

▪ https://memfault.com/webinars/

▪ https://interrupt.memfault.com

▪ Email: tyler@memfault.com

49

https://www.linkedin.com/in/tyhoff/
https://memfault.com/webinars
https://interrupt.memfault.com/

Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante
Merci

감사합니다
ध"यवाद

Kiitos
ارًكش

ধন#বাদ
הדות

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

