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Speaker
Tyler Hoffman, Co-founder @ Memfault

Previously a Firmware Engineer @ Pebble & Fitbit 

Split time between writing & debugging firmware and 
building internal services to help monitor millions of 
devices.

Can find my thoughts and content on Memfault's 
Interrupt blog: interrupt.memfault.com
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https://interrupt.memfault.com/
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What are we trying to do today?

• Talk about firmware on embedded MCU systems

• Speed from development to testing to mass production and scaling

• Find and fix (quickly) 1 in 10,000 hour bugs in production

• Prevent issues from being released to 100% of users

• Establish measurable stats to track progress on goals
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One of my favorite quotes

“These techniques are not necessary because experienced firmware 

engineers do not introduce bugs in their code”

- A (real) Firmware Engineer
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State of the union for firmware
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Firmware is pervasive, but difficult

• In Q4 2020, 4.4 billion Cortex M’s shipped
• Tons and tons of firmware running on these devices
• Very few tools to help debug these devices
• Software is becoming more complex - leads to bugs
• Software issues lead to:

• Bricked devices, RMA’s, and security exploits
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We need proper tools to help us build quality products
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Increasingly complex topologies
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Increasingly complex software

• Firmware no longer is complete isolated
• Must communicate to mobile phones & gateways
• Protocols, devices, and security issues constantly changing
• Libraries are massively complicated (e.g. mbedTLS)

• Expectations are growing
• Everything connects to Internet
• Must enable firmware updates
• Competition is growing
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Rudimentary Debugging Tools
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[I][1605794400] Wi-Fi connected
[W][1605796200] Wi-Fi disconnected, reason: -2
[I][1605796500] Wi-Fi connected
[W][1605797100] Wi-Fi disconnected, reason: -2
[I][1605798000] Battery status: 67%, 3574 mV

***** MPU FAULT *****
Instruction Access Violation

***** Hardware exception *****
Current thread ID = 0x20000074
Faulting instruction address = 0xe0000000
Fatal fault in thread 0x20000074! Aborting.

The existing tools are decent, but only when connected using JTAG
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Debugging Data Exported to ???
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Serial Logs

Reset 
Registers

Simple 
Metrics

Outputs

(Black Hole)
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Not much exists to help us
• Existing software solutions won’t work

• We aren’t monitoring 10-100 servers, rather 10k – 1m+ devices
• We don’t have MB’s and GB’s of RAM lying around, we have KB’s
• Assembly, C, C++, Rust (?)
• Symbol files (.elf’s) required for typical debugging experiences
• AWS IoT, 

• Few existing solutions that can help embedded devices
• Firmware is not an open-source ecosystem or sharing community

12

Whatever we need, we have to build ourselves
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Some issues will only happen in the field
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“a third of all software faults take more than 
5000 execution-years to manifest 

themselves.”

*Source: http://www.ganssle.com/tem/tem417.html

http://www.ganssle.com/tem/tem417.html
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Detecting Current Issues
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Do we have issues in the field…

They’re likely having issues
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Detecting current issues
Fundamentally, we need to know if and how many times 
devices are experiencing issues.

Once we have this information
• Can assess whether further work is needed.
• Can make assumptions about whether a firmware update improved stability
• Can guide business & product decisions
• Leaders know whether it’s time to fix bugs and tech debt or build new features
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Detecting current issues
void buggy_function(void) {

*(uint32_t *)0xbadcafe = 0x0;

}
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void HardFault_Handler(void) {

// … fault handling code ...

NVIC_SystemReset();

}



18

Detecting current issues

::::::: LOGS ::::::::

ERROR: Connection lost - reason -7
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• Sending & Parsing logs
• Log important device events
• Log resets and registers
• Hard and doesn’t scale well

• Tracking simple metrics
• # device resets
• # devices alive and well
• Average uptime of devices
• Scalable, but less information

Detecting current issues
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Requirements:

1. Path to the Internet
2. Central repository for device data
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Detecting current issues
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Reset
{

“reason”: “watchdog”,
}

“ble_connected_s”: 3212

Aggregate!
Watchdogs: 67
Hardfaults: 23
Shutdowns: 17

Average BLE Connected per hour: 3212 seconds
% Connected per hour: 89%Hourly

Heartbeat

“uptime”: 86345
Number devices: 890
Average Uptime: 90,234 seconds

“main_stack_min”: 16
Stack low watermark is 16 bytes on some 
devices. Yikes!
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Analyzing the Issues
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We have issues. How do we fix them?
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Debugging in Production
• We don’t have access to our normal toolset.

• No UART & serial logs
• No JTAG and quick re-flashing
• No IDE, GDB, or step-through debugging
• RMA’s take weeks. Devices must persist the data.

• We need tools specifically for debugging in production
• Build these tools as early as possible
• Having them early will pay off 10x (Speaking from experience)
• If you have no interest in building them, check out Memfault
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Using Logs to Analyze Issues

2 Wi-Fi disconnect events
1 Battery level event
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[I][1605794400] Wi-Fi connected
[W][1605796200] Wi-Fi disconnected, reason: -2
[I][1605796500] Wi-Fi connected
[W][1605797100] Wi-Fi disconnected, reason: -2
[I][1605798000] Battery status: 67%, 3574 mV

***** MPU FAULT *****
Instruction Access Violation

***** Hardware exception *****
Current thread ID = 0x20000074
Faulting instruction address = 0xe0000000
Fatal fault in thread 0x20000074! Aborting.

1 crash due to MPU violation

Program Counter: 
0xe0000000
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Using Coredumps to Analyze Issues
• What is a coredump

• A snapshot of RAM regions at a 
specific moment in time.

• Can be captured on command, or at 
time of a fault, such as a hardfault or 
ASSERT.

• Helps with post-mortem debugging
• Requires symbol file & clever parsing 

• What RTOS’s support coredumps 
natively?
• ESP32, Zephyr RTOS, MyNewt RTOS
• Any RTOS with Memfault
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Coredump

Firmware Version

Timestamp

Device Serial

Hardware Revision

Memory 
Regions
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Using Coredumps to Analyze Issues
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void HardFault_Handler(void) {

// … fault handling code ...

NVIC_SystemReset();

// Don’t just crash…

capture_coredump();

}

Coredump

Firmware Version

Timestamp

Device Serial

Hardware Revision

Memory 
Regions
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Using Coredumps to Analyze Issues
A coredump is comprised of raw memory regions

• From coredumps, one can recover:
• Threads and stacktraces
• Heap allocations and statistics
• Global variables
• Local variables and function arguments
• System and peripheral registers
• Anything else you want to collect (and parse)
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Memory Regions
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Using Coredumps to Analyze Issues
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Threads, backtraces, local variables, and registers
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Using Coredumps to Analyze Issues
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Parse and interpret system registers
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Using Coredumps to Analyze Issues
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View all global variables at time of coredump
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Coredumps – What can I debug?
• Crashes and other items worth extra 

investigation
• Hardfaults, Memfaults, Asserts, etc.
• Deadlocks, system stalls
• Memory corruption issues
• Heap out-of-memory
• Stack overflows
• Undefined behavior 

(”SHOULD NEVER HAPPEN” 😉)
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https://embeddedartistry.com/blog/2021/01/11/hard-fault-debugging/

https://embeddedartistry.com/blog/2021/01/11/hard-fault-debugging/
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When Coredumps Aren’t Enough
• Coredumps aren’t the perfect solution for all 

issues
• Behavioral bugs require more of a timeline than a 

snapshot (if this & this, then that) 
• Devices with storage or bandwidth constraints
• Issues in interpreted languages (MicroPython, 

JerryScript)
• Determining trends

• When you need context before a crash…
• Use logging or simple tracing
• Store log lines in a RAM buffer, send it with 

coredump!
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Preventing Issues
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We fixed the issues. How do we don’t introduce more?
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Internal Testing
• You must be testing the devices internally

• Catch and fix as many bugs before production as 
possible

• Firmware team, QA, engineers, and other employees
• Ask biggest fans of your product to be beta testers
• Encourage users to report bugs
• Less concerns around privacy & data collection

• Build and deploy nightly or regular firmware 
updates to devices
• Constantly be fixing and verifying fixes
• Perform experiments!

35Unfortunately, some bugs will only be caught in production.

Your device just 
reset. Please submit 
a support ticket!
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Staged Rollouts
• Send out firmware updates in a controlled 

manner
• Send it out to 5%, then 10%, then 20%, etc.
• At each step, assess quality and performance
• New issues? – pull the firmware update!

• How to implement staged rollouts?
• Hosted firmware update solutions have this feature
• At the very least, can set up devices to poll once 

every 24 hours (random interval) for new firmware 
update
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100 devices

1,000 devices

10,000+ devices

…wait a few days

…wait a few days
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Metrics
Uncover trends on anything that is numerical

• Common metrics are:
• Task runtimes
• Heap information
• Connectivity statistics
• Frequency of errors
• Peripheral utilization and power states
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Pinpoint power, connectivity, and performance issues and regressions
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Metrics
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void flash_sector_erase(uint16_t sector) {
...
device_metrics_incr(kDeviceMetric_FlashSectorErases);

}

void flash_write_bytes(uint32_t addr, void *buf, size_t n) {
...
device_metrics_incr_by(kDeviceMetric_FlashWriteBytes, n);

}

https://interrupt.memfault.com/blog/device-heartbeat-metrics

https://interrupt.memfault.com/blog/device-heartbeat-metrics
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Metrics

39

Counts
Averages
Min/Max

Central 
Server

0110...

0001...

1110...

Per Device Entire Fleet

Counts
Averages
Min/Max

7.2 days battery life

1.7 reboots/day

87% connected
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Metrics
We can compare metrics between firmware versions
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v1.0.0 v1.1.0

1.3 daysAverage Uptime 1.32 days -

CPU sleep time 83% 96% 📈

Stack bytes free – low water mark 150 bytes 72 bytes 📉

Improvement?
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Best Practices 
My Favorite Practices
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Sharing my tips & tricks monitoring millions of devices 
with proper tooling in place
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Life With Debugging Infrastructure
If you have logs & coredumps being sent from 
devices, you can employ what I call offensive 
programming.

This is the proper way to debug “in production”
• During runtime, raise errors immediately!

• Bring bugs front and center
• Undefined behavior – reset to a known state
• Assume that if bugs are raised early and often, 

they can be fixed before shipping
• With a handful of devices, the 1 in 10,000 hour 

bugs can be caught
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https://interrupt.memfault.com/blog/defensive-and-offensive-programming

BAD BAD BAD BAD

https://interrupt.memfault.com/blog/defensive-and-offensive-programming
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Use ASSERT() Liberally
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Argument validation
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Use ASSERT() Liberally
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Assert on heap exhaustion
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Use ASSERT() Liberally

46

Easily capture and diagnose timing issues
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Use ASSERT() Liberally

47

State machine transition violations
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Erase after free
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Zero out allocations after free

Now standard in iOS 16.1 and macOS Ventura**
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The End

▪ Happy to connect!

▪ https://www.linkedin.com/in/tyhoff/

▪ https://memfault.com/webinars/

▪ https://interrupt.memfault.com

▪ Email: tyler@memfault.com
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https://www.linkedin.com/in/tyhoff/
https://memfault.com/webinars
https://interrupt.memfault.com/
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