
Wrangling Penguins:
Better Embedded Linux

Monitoring and Debugging
with Memfault

Thomas Sarlandie, Linux Tech Lead

• Passion: building at the intersection of
software and hardware

• Previously led software teams at Pebble
and Fitbit

• 🦀 🦀 🦀 Rust-aficionado

Thomas Sarlandie
Linux Tech Lead, Memfault

Monitoring a fleet of embedded devices

Agenda

Debugging with logs and coredumps

Q & A

Monitoring embedded linux devices

Poll #1

Which of these
tools do you use
to monitor and
debug your fleet in
production?

Check all that apply

A. SSH

B. Grafana

C. Coredumps

D. Logs

Memfault for Device Reliability Engineering

Contin
uous R

ele
as

e
Feedback Loop

Test

Im
plem

ent

Design

Software
Delivery

Performance
Monitoring

Device
Debugging

Monitoring embedded linux devices

Monitoring Goals

Validate hypotheses and debug device
issues

Get a pulse on the fleet - especially
when shipping new hardware or
firmware

Detect problems before the customers

Monitoring Challenges

On Device

● Collecting from
different sources
and languages

● Partial connectivity
● Flash wear and

networking costs

Backend

● Scaling pains
● Lack of flexibility
● Visualization tools

Usage

● Drowning in data
● Metrics are

meaningless when
aggregated

● Signal lost in the
data

Metrics
A metric is a measurement captured at runtime

Combing large numbers of metrics and
calculating statistics is called an aggregation

10

Collecting metrics on device

● Memfault leverages collectd
to capture system and
device metrics

● Customize which system
metrics to capture using
collectd plugins

● Push device metrics using
the collectd/statsd endpoint

Linux Environment

collectd

plugin plugin plugin

statsd
plugin

Various system stats
(e.g. network, RAM, CPU, storage, power, temp.)

applicationapplicationapplication
metrics

Memfault Agent

HTTPS

11

Pushing custom metrics

Look for a statsd library in your language

12

Data aggregation that can scale

collectdapplicationapplicationapplication
metrics

Memfault Agent

statsd push
Arbitrary frequency

collectd plugins
Typically 10s interval

plugin

Collectd Aggregation
Push all metrics every 10s

Memfaultd Aggregation
One heartbeat /hour

Backend Aggregation
Maintain /hour and /day

aggregation for all
timeseries

13

Device monitoring

14

Use metrics to create a device set

● Device sets are dynamic list
of devices

● The list will update as new
data comes in

15

Metrics for alerting

● Device sets make very useful graphs

● Metrics can be used to trigger alerts

From device monitoring to fleet monitoring

17

Fleet monitoring
(1000 devices or more)
● Select the right metrics
● Scale the ingestion and aggregation
● Pick the right visualization

18

From device to fleet monitoring

CPU
CPU

CPU

Avg Fleet CPU

% bat
drop Avg bat %drop

per hour

of
crashes

Crash free
hours

Not very useful
unless usage is stable

Useful to keep track of power
management improvement

A useful KPI for device
engineering teams

See detailed how to setup crash free hours
https://docs.memfault.com/docs/best-practices/fleet-reliability-metrics-crash-free-hours/

❌

✅

✅

% bat
drop% bat

drop

of
crashes# of

crashes

https://docs.memfault.com/docs/best-practices/fleet-reliability-metrics-crash-free-hours/

Some useful fleet metrics

● Cellular modem
connected (s)

● Bytes received / sent
● Time spent connecting
● Ping
● RSSI

● Discharge per hour (s)

● Screen “on” time (s)

● # of operations / failure

● Time to execute
operation

● Free memory (Min and
Avg)

● Temperature

● Flash read/write

● Free disk space

Battery Connectivity Flash

Usage System

20

Visualizing Fleet Data

21

Visualizing Fleet Data

Percentiles help understand how large a problem is
and how much of the fleet is impacted.

22

Normalizing data

Turn on data normalization to compare absolute
values across cohorts of different sizes

23

Fleet wide alerts

● Use “Fleet Alerts” to monitor
a specific metric over the
entire fleet

● Send notification by email
and slack to the team

Monitoring Challenges

On Device

● Collecting from
different sources
and languages

● Partial connectivity
● Flash wear and

networking costs

Backend

● Scaling pains
● Lack of flexibility
● Visualization tools

Usage

● Drowning in data
● Metrics are

meaningless when
aggregated

● Signal lost in the
data

Easy to use “fire and forget”
metrics API

On device buffering and
aggregation

Use best practices to select
useful variables and iterate

Use normalization, percentiles,
etc

Debugging devices

Poll #2

Where are
most of your
bugs?

A. Kernel

B. Kernel Modules / Drivers

C. System Daemons

D. Libraries and Runtimes

E. Application Code

Challenges

Poor quality bug reports
Triaging bug reports

No access to the device

No visibility inside the device

Debugging toolsDebugging Tools

Device
Metrics

Logs

Coredumps

Logs

Memfault captures device logs with
fluent-bit and stores them locally on
device.

By default logs are only uploaded
for development devices.

You can selectively collect logs from
specific devices. This works
retroactively.

Logs are kept on disk until
requested by backend or max
storage space is exhausted.

Configuring fluent-bit
Many input

options:
systemd, files,
network, serial

On “the edge”
filtering to reduce

noise

fluent-bit does not
write to disk

Sends to
memfaultd

memfaultd applies rate limiting,
compresses and writes to disk at
regular intervals (10MB or 1hour)

31

Browsing logs

Logs are also available via an API endpoint

32

Debugging with coredumps

Signal received Action taken by
kernel

33

Coredump

Coredumps contain:
• program status for each thread (registers incl. PC and SP)
• some of the program memory (mostly stack and heap)
• build-id of the running binary
• build-id and address of all the dynamic libraries that are loaded

34

Using coredumps

main main

make_request

main

make_request

ssl_init

main

make_request

ssl_init

ssl_alloc

SP

SP

SP

SP

what happens on the device data we get
in the coredump

SP

PC

PC

PC

PC PC

35

Using coredumps

what we get

SP Debug Symbols

Build-Id
Symbols

addresses
Stack Frame Sizes

what we can recover

main

make_request

ssl_init

ssl_alloc
frame size

frame size
Debug Symbols

Build-Id
Symbols

addresses
Stack Frame Sizes

symbol name

symbol name

symbol name

frame size

PC

Coredumps view

The state view will list all the running
threads and their status

Typically, you will get an immediate
read on where the error happened
and what were the local variables at
the crash

For more complicated bugs, you
can download the coredump and
run the debugger locally

Uploading Symbols

Debugging symbols are required to
provide useful coredump analysis

Build and save debugging symbols
for all the binaries you produce
Incuding all system libraries

Strip your binaries before sending
them to customers

Manual symbols upload

$ gcc -g -o code code.c
$ memfault upload-symbols code
$ strip code
$ cp code /mydevice/usr/bin/

With Yocto

$ cat >> conf/local.conf
DEPENDS:append = " elfutils-native"
IMAGE_GEN_DEBUGFS = "1"
IMAGE_FSTYPES_DEBUGFS = "tar.bz2"

$ bitbake image
$ memfault upload-yocto-symbols ...

Using Coredumps at Scale

Memfault will automatically generate a signature for each
Trace and group all similar traces together in one Issue

Keep track of
● Number of traces captured per day
● Number of devices impacted by a specific issue
● Frequency of an issue over different firmware versions

Getting started

Try this at home!
https://docs.memfault.com/docs/linux/quickstart

● Docker container to easily build Yocto
images

● Pre-configured for OTA with SWUpdate
and U-Boot

● Runs inside QEMU or on RasperryPis

Memfault Linux SDK

https://docs.memfault.com/docs/linux/quickstart

Thank You!

• memfault.com
• twitter.com/memfault
• interrupt-slack.herokuapp.com

• We’re hiring!
Tyler Hoffman

https://memfault.com/
http://twitter.com/memfault
https://interrupt-slack.herokuapp.com/

